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A Deep Learning Approach to Adherence Detection for Type 2 Diabetics

Ali Mohebbi1, Tinna B. Aradóttir1,2, Alexander R. Johansen1,
Henrik Bengtsson2, Marco Fraccaro1, Morten Mørup1

Abstract— Diabetes has become one of the biggest health
problems in the world. In this context, adherence to insulin
treatment is essential in order to avoid life-threatening com-
plications. In this pilot study, a novel adherence detection
algorithm using Deep Learning (DL) approaches was developed
for type 2 diabetes (T2D) patients, based on simulated Contin-
uous Glucose Monitoring (CGM) signals. A large and diverse
amount of CGM signals were simulated for T2D patients using
a T2D adapted version of the Medtronic Virtual Patient (MVP)
model for T1D. By using these signals, different classification
algorithms were compared using a comprehensive grid search.
We contrast a standard logistic regression baseline to Multi-
Layer Perceptrons (MLPs) and Convolutional Neural Networks
(CNNs). The best classification performance with an average
accuracy of 77.5% was achieved with CNN. Hence, this indicates
the potential of DL, when considering adherence detection
systems for T2D patients.

I. INTRODUCTION

Diabetes has become one of the biggest health problems
in the world. It is categorized into two main types, type 1
diabetes (T1D) and the more common type 2 diabetes (T2D)
with prevalence of approximately 95% [1]. Diabetes is a
chronic condition where the body is incapable of producing
enough insulin or where it cannot use it, causing elevated
blood glucose (BG) levels. An estimated 415 millions adults
are diagnosed with diabetes worldwide, while 193 millions
are still undiagnosed. Prolonged elevated glucose levels can
lead to life-threatening health complications [1]. Therefore,
in T1D and progressed T2D, supplementation of long-acting
insulin may be required to maintain the desired glucose
levels. Hence, adherence to treatment and self-monitoring of
blood glucose (SMBG) is essential for all diabetes patients.
Unfortunately, adherence to insulin treatment is quite poor,
as it is estimated to be only 57-67% and 47-51% in the UK
and US respectively [2].

SMBG is the most widely used approach to manage BG
levels, however improved Continuous Glucose Monitoring
(CGM) technology has opened up exciting opportunities for
T2D management. CGM devices are already in use in T1D
and expansion of these towards treatment decisions is taking
place [3], giving the ability of continuously monitoring BG
levels with a predefined interval (usually between 5 − 15
minutes).

In this pilot study, a large amount of simulated 24
hour T2D CGM signals were produced (with glucose level
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readings every 5 minutes). The simulation scenarios rep-
resented the different realities of T2D patients including
adherence and non-adherence. The CGM signals were used
to develop and evaluate different adherence detection mod-
els/algorithms. The purpose of this study was to investigate
whether adherence detection was possible based on (simu-
lated) CGM signals. In this context, we wanted to investigate
if this goal could be achieved by simple linear or more
complex approaches as in the case of Deep Learning (DL).
Recently, DL methods have advanced and received state-
of-the-art performance within Machine Learning (ML). This
includes image and speech recognition problems, in addition
to monitoring purposes as in e.g. Parkinson’s Disease [4]–
[8].

As a proof of concept, we investigated the possibility
of building different classification models for adherence
detection using CGM signals. The included models con-
sist of logistic regression, and more complex models with
Multi-Layer Perceptrons (MLPs) and Convolutional Neural
Networks (CNNs). Additionally, in order to achieve better
predictive performances, ensembling was examined. In this
context, Google’s TensorFlow (r0.12) [9] was used as the
platform to develop the algorithms, allowing straightforward
configuration of the models [7]. A robust adherence detection
algorithm is essential, considering effective insulin therapy,
avoidance of hypo- and hyperglycaemia in addition to finding
subject-specific optimal (insulin) doses. To the best of our
knowledge, this study is the first of its kind.

II. METHODS

A. Simulating insulin-glucose dynamics in T2D

Kanderian et al. [10] proposed a physiological model for
simulating 24 hour insulin-glucose dynamics in T1D patients
along with identified parameter sets for 10 patients. The data
simulator in the current work uses this model as a foundation
for the T2D model.

The non-linear MVP model consists of 6 compartments;
subcutaneous and plasma insulin (Isc and Ip), two meal
compartments (D1 and D2), insulin effect on glucose (Ie f f )
and blood glucose (G). A block diagram is illustrated in Fig.
1. EGP and GEZI represent endogenous glucose production
and insulin effectiveness at zero insulin. The underlying
coupled differential equations can be found in [10]. The
simulator furthermore uses a linear model of endogenous
insulin production by Ruan et al. [11] and adjustments in
a number of parameters to account for main physiological
differences between T1D and T2D patients. This method
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Fig. 1. Block diagram of the MVP model (green) [10] augmented with
endogenous insulin production (red) [12] used for simulations in the current
work. The output, G(t), is the noisefree signal.

is described in [12]. The endogenous insulin production,
defined by Eq. 1,

IENDO(t) =
MI(G(t)−GENDO)+M0GENDO

MCRIW
, (1)

is added to the plasma insulin compartment of the MVP
model. The numerator expresses the posthepatic insulin
secretion rate. This is illustrated in Fig. 1. The green square
depicts the original MVP model for T1D patients, while the
red square shows the T2D augmentation to the model. W is
the body weight, MCRI is the insulin metabolic clearance
rate, GENDO is the fasting plasma glucose concentration
threshold related to the endogenous insulin production, M0
is the basal glucose sensitivity, MI is the posthepatic glucose
sensitivity and G(t) is the plasma glucose concentration. The
values for the parameters were chosen as the median values
reported in [11] (MCRI ,MI = MI, f ,M0 = M0, f ). The GENDO
threshold was set to 7 mmol/L.

B. Long-acting Insulin & Titration Algorithm

In this study, the pharmacokinetic profile of the long-
acting insulin Tresiba R©, or Insulin Degludec (IDeg) by Novo
Nordisk A/S, is used. Based on clinical data, Tresiba has a
half-life of > 25 hours, reaches steady state after 2-3 days
and is detectable in the blood for approximately 5 days [13].
The MVP model parameters, published in [10] correspond to
fast acting insulin infused by pumps. Since the current study
considers long-acting insulin injections, a long-acting insulin
injection profile is simulated by fast-acting insulin infusion
which gives a similar activity profile. This is described in
[12].

To find patient-specific optimal dose, the simulator uses
a titration algorithm previously used in clinical trials on
IDeg. The blood glucose concentration target is set to 4−5
mmol/L, which ensures that an identified optimal dose at
end of titration safely keeps glucose concentrations within
desired levels. In the data set, a patient is either adherent or
non-adherent to the prescribed optimal dose.

C. CGM Simulation & Data Generation

To simulate CGM noise, an autoregressive noise model
proposed by Facchinetti et al. [14] was added on top of
the simulation model output (G(t) in Fig. 1). We wanted
to simulate scenarios for T2D patients, which would imitate

the reality of their BG levels in many different cases. In this
context, considering the long half-life of IDeg, the simulation
days were of 10 consecutive days. The first 5 days with the
patient being adherent to the optimal insulin dose, followed
by 5 days of non-adherence. The implementation of the
titration algorithm and simulations of CGM signals were
performed in MATLAB (The MathWorks, Inc.).

In order to produce a large amount of CGM data, parame-
ters of 9 out of the 10 identified parameter sets in [10] were
used. Subject number 10 was excluded due to unexplained
unrealistic dynamics. A subset of parameters were varied
within a pre-defined range, defined by typical differences
between T1D and T2D patients seen in clinical trials [12],
[13]. These include 10%, 20% and 30% increase in the body
weight (W ), basal glucose level (Gb) between 6−11 mmol/L
and a decrease in insulin sensitivity (SI) by 30%, 50% and
70%. These adjustments are described in [12]. To the best
of our knowledge, there is lack of evidence on correlation
between the described parameters. Thus the change in a
subset of parameters.

Each day of CGM data includes either 2 or 3 main meals
with varying carbohydrate (CHO) intakes and several snacks.
Sizes and timings of CHO intake were chosen at random
within predefined realistic ranges [15]. This resulted in a
large amount of CGM data for the 9 patients, representing
different realities of T2D patients. Based on the variation in
parameters in addition to repetition of the simulations, 10800
days of CGM data (3W ×3SI ×6Gb × 10 days × 20 different
meal scenarios) were produced for each patient, resulting in
a total of 97200 simulated CGM days. Simulated CGM data
produced for patient 1-6 were used for training purposes of
the models, whereas the data for the remaining 3 patients
were reserved for evaluation of the developed models, see
also Fig. 2.

D. Deep Learning

Deep learning builds on neural network theory, and per-
forms automatic feature extraction rather than relying on
expert-dependent features [7]. Here, the designed models
are characterized by producing outputs which are the class
probabilities of either adherence and non-adherence. In other
words, the probability of belonging to each of the classes
given a day of CGM data as input. As function for training
error, we use the cross-entropy error function defined by,

E =−
N

∑
n=1

(
yn ln ŷn +

(
1− yn

)
ln

(
1− ŷn

))
, (2)

where yn is the the desired output and ŷn is the predicted
class probability for a day of CGM (denoted as xn, n =
1, ..,N). The predicted class probability is defined with a
logistic sigmoid activation function,

ŷn = ŷ(zn) =
1

1+ e−zn
. (3)

For logistic regression zn is a linear parametric function, i.e.
zn = ∑i wixni+b, whereas for MLPs and CNNs we make the
model more powerful by adding multiple layers of non-linear
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Fig. 2. Schematic representation of the simulations followed by classification. Once the CGM signals were produced for all 9 patients, they were divided
into training, validation and test set. Based on leave-one-patient-out cross-validation the training and validation sets, including patient 1 to 6, were used
on one of the classifiers. Best performing classifiers were then applied on the test set (patient 7-9), presented to the models for the first time, resulting in
different performances.

parametric functions.
The optimal values for the parameters of the model,

represented for logistic regression by the weights wi and the
bias term b, are found by minimizing the cross-entropy error
function. While this function is convex for linear regression,
for MLPs and CNNs the non-linearities in the model lead to
a non-convex problem with several local minima. We find the
minimum with gradient-based optimization, using the Adam
optimizer [16] for stochastic error functions. The framework
used to develop the different classification algorithms is
based on the state-of-the-art library Tensorflow (r0.12) [9]
developed by Google, which has gained considerable atten-
tion since its release in the fall of 2015.

E. Grid Search & Tuning of Hyper-parameters

As mentioned earlier, DL has shown great performance in
different classification problems. However, the performance
is highly dependent on the problem, the amount of available
training samples and the architecture of the models. Addi-
tionally, it relies on a set of hyper-parameters, which have to
be thoroughly chosen. Among these we find for example the
number of iterations/epochs, the mini-batch size (BS) and
the learning rate (LR) [17]. Incorrect tuning of these can
cause suboptimal performance. In general, DL is a highly
empirical and explorative process when investigating new
data and model architectures. We therefore performed a grid
search for each model in order to tune the hyper-parameters
in a more principled way.

F. Experiments & Choice of Hyper-parameters

The experimental pipeline is presented in Fig. 2. For
the simulated CGM signals of each patient, the data was
separated into a training, validation and test set. In this
context, leave-on-patient-out cross-validation was performed
when evaluating the classifier models of logistic regression,
MLP and CNN under training. Here, patient 1 to 6 were
used for training purposes. The average cross-validation
performances were used to tune the hyper-parameters when
training the models. Once the best models were found, based
on a comprehensive grid search, each model was evaluated
on the test set including patient 7 to 9. In order to investigate
the robustness of the models to the initialization of the

parameters, 10 additional restarts were performed, giving a
total of 11 runs.

In the case of logistic regression, the LR was set to either
10−2 − 10−4 with BS 150 and 250. The best performance
was obtained with a BS of 250 and LR = 10−4. Henceforth,
this BS was used for MLP and CNN.

Under MLP, a larger grid search was performed by
including LR between 10−2 − 10−5, 3 different numbers
of fully-connected hidden layers (1, 2 or 3) of either 10,
50 and 100 hidden units. The output in the hidden layers
used rectified linear units (ReLUs) as activation function, as
commonly used in different DL tasks [8], as it does not suffer
from vanishing gradients like the sigmoid or tanh activation
function,

fReLU = max(0,x) . (4)

Additionally, several combinations of layers with different
numbers of hidden units were performed for larger models
with and without dropout of different probabilities (0.7 and
0.9). Dropout is a regularization method where you randomly
turn off some of the units in the layers to control and avoid
overfitting to the training data [18].

Considering CNN, 3 different convolutional layers with
ReLUs, followed by max-pooling layers were applied [4].
The LR range was restricted between 10−3 − 10−4 based
on performances from previous models. Hyper-parameters
related only to CNN include filter size (in both convolutional
and max-pooling layer), number of filters and stride length.
In our case, stride length and filter size of the max-pooling
layers were fixed to 2 and [1× 2], respectively. Given this
setup, the number of hidden units in the fully-connected layer
before the output layer were investigated with 10 and 50
units. For the feature extraction, 8,16,32 and 64 number of
filters and filter sizes of 6,12 and 18 were investigated. The
filter size represents the part of the signals which is taken into
account at a time. Thus, e.g. a filter size of 6 corresponds to
30 minutes of the simulated CGM signal. Each filter searches
for a specific feature of the whole sequence.

III. RESULTS & DISCUSSION

The average performances of the best models are shown
in Fig. 3. In MLP the combination of LR = 10−3 and one
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Fig. 3. Accuracy performances of the best models, including average
validation, average test and ensemble test accuracy. The standard deviations
across the 11 restarts are indicated with error bars.

hidden layer with 10 hidden units was the best performing
model. In CNN, the best model was the combination of
LR = 10−4, 2 convolutional layers, FS = 18, number of
filters = 8 and 10 units in the fully-connected layer. The best
performing models did not include dropout. We show average
validation, test and ensemble test accuracies (including error
bars), based on the 11 runs. Ensembling is obtained by
taking an average of the probabilities given by different
models, before making a prediction. We ensemble the output
probabilities given by the 6 models obtained during the cross-
validation step. On the other hand, to compute the average
test accuracy we average, instead of the probabilities, the
accuracies obtained by each of the 6 models.

It is easily observed that for all 3 models, adherence
detection is higher than 50% chance (dashed red line).
Interestingly, the average validation accuracy is similar for
all 3 models. On the other hand, the average and ensemble
test accuracies seem to perform much better. An explanation
of this could be the fact that the patients in the training
data were too difficult to train, compared to the patient data
in the test set. This indicates and necessitates individual
examination of each patient, when it comes to real world
application of such adherence detection system. Additionally,
a remarkable point here is the obvious effect of ensembling,
when taking the average of the class probabilities before
performing predictions. In all 3 cases, the ensemble test ac-
curacy does better compared to the average test accuracy. An
overall comparison presents CNN being the best preforming
model with 77.5± 1.4%, followed by 72.5± 3.5% in MLP
and 65.2±0.8% in logistic regression.

It should be emphasized that DL seem to have great
potential when it comes to adherence detection for T2D
patients. Both MLP and CNN indicate promising perfor-
mance, given the setup and grid search presented in this
study. However, based on the results, there is an indication
of the models performing differently on each patient. Hence,
patient-specific classification algorithms should be further
investigated using the different DL approaches.

IV. CONCLUSION

As the main objective of this study, we showed that it is
possible to use CGM signals for adherence detection for T2D
patients, in addition to DL being a promising approach for
this task. A large amount of CGM signals were produced,
imitating the reality of T2D patients. Here, the presented
models were investigated by a comprehensive grid search,
using the simulated CGM signals. Even though the standard
logistic regression model achieved an accuracy better than
random of 65.2± 0.8%, the best performing models were
obtained with DL, giving a 77.5±1.4% accuracy with CNN,
and 72.5±3.5% with MLP. Considering future perspective,
once large amount of real CGM data is available, the
possibility of patient-specific detection systems, based on DL
models, should be examined.
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