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Abstract

Recommender systems are used in online platforms to make per-
sonalized suggestions of new items to users. For systems based on
matrix factorization techniques the recommendation step scales lin-
early with the number of objects in the catalog. This leads to a
serious bottleneck in large-scale applications that have a strict time
budget and in which there may be millions of items.
In this work it is developed a probabilistic model for the recom-
mender system that thanks to some constraints allows to give high-
quality suggestions in sublinear time, exploiting fast tree structures
originally built for nearest neighbor searches.
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Chapter 1

Introduction

Over the last few years recommender systems have become fundamental in help-
ing users to �nd the right items in the enormous catalogs the Web o�ers. When
entering an e-commerce website such as Amazon for example, one of the �rst
things a customer is shown is a list of recommended products that match the
customer's tastes. In a similar way, the most suitable songs, videos and movies
are suggested to users in online platforms such as Spotify, Youtube and Net-
�ix. Good recommendation are crucial to increase customers' satisfaction and
loyalty, and assume therefore a major role for the success and revenue of these
platforms.
The development of reliable recommender systems has become possible after the
advent of machine leaning techniques: making the system learn from available
training data, one can in fact perform tasks that were considered too di�cult to
solve in the past using just explicit programs (constructed for a speci�c opera-
tion). With recommender systems in particular it is possible to teach a computer
how to understand what a user likes and use this information to suggest new
items. In this thesis we will go one step further: not only we want the system
to learn how to understand the user's tastes, but we also want it to learn how
to organize the data in such a way that the best recommendations for each of
the users can be found e�ciently1. One of the main bottlenecks in large scale
systems is in fact the enormous number of items in the catalogs (e.g. one could
choose among millions of songs): this makes it is impossible to give accurate

1This is the reason behind the title of the thesis, learning to index.



2 Introduction

suggestions in real time. To deal with this issue modern systems only consider
small subsets of the items formed with some heuristics but, to the best of our
knowledge, no one before has tried do deal with the whole catalog at once.

Some of the most common recommender systems suggest an item to an user ac-
cording to what several other people with similar tastes have liked in the past.
In particular, knowing for each user the list of rated items in the catalog, it is
possible to construct a rating matrix R, whose element (i, j) contains the rating
that user i has given to item j. If we have N users and M items, R is then
a N ×M matrix, and it is typically extremely sparse (it can have for example
much less than 1% of non-empty elements). Matrix factorization techniques in
particular (Koren, 2009), that are presented in chapter 5, approximate the rat-
ing matrix with the product of two much smaller matrices plus a residual term,
i.e. R = UTV + E, where U is an D × N user matrix, the item matrix V is
D ×M and the residual term E is N ×M . All the N user and M items are
hence associated to a D-dimensional vector in which each of the dimensions rep-
resents a di�erent hidden factor. In movies recommendations for example these
factors may be interpreted as common aspects such as the type of movie (e.g.
comedy vs horror) while some of them can be really di�cult to explain. The
factorization is performed using a rather complex probabilistic graphical model,
that allows to take into account uncertainties in the suggestions. The machine
learning tools necessary for the training phase of the model are introduced in
Chapter 3.
Once the model is trained, it recommends an item to an user if they both have
similar hidden factors. This means that to make a suggestion to an user one
has to compute the similarity between the user vector and all the M item vec-
tors: the recommendation step to o�er the best possible choice scales therefore
linearly with the number of items. This is can be a huge problem for all the
applications in which the number of items in the catalog is bigger than some
hundreds of thousands of elements. In this case it is in fact impossible to scan
the whole list of items in real time, therefore, as said above, just some small
subsets of elements formed with some heuristics can be analyzed, leading to
non-optimal suggestions.
In chapter 6 we will however show that putting some particular constraints to
the norm of the item vectors and exploiting the so called metric data structures
(Samet, 2005), the recommendation step can be performed with a drastic re-
duction in the retrieval time (in logarithmic time with respect to the number of
items in the ideal case). We will therefore need to formulate a new model for
the recommender system that takes these constraints into account. This will
be done in chapter 7. The resulting model will be more complex to construct
and handle: some advanced Markov Chain Monte Carlo techniques that exploit
di�erential geometry (presented in chapter 4) will be needed for an e�cient
training phase. The results obtained using this model show in particular that
the constraints imposed only slightly in�uence the �nal quality of the recom-
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mendations.
Combining the proposed model with the data structures introduced in chapter
8 we will be �nally able to obtain a 4x speedup with high quality suggestions
for the recommendation step. The example proposed has relatively a small size,
meaning that the actual speedup achievable in larger scale systems will be much
higher.
In the next chapter we will give a general introduction on recommender sys-
tems, that is necessary to understand the main issues involved in real world
applications.
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Chapter 2

Recommender Systems

2.1 Introduction

The main goal of recommender systems is that of supporting users in their (on-
line) decision making, helping them to discover interesting items they might not
have found by themselves (Rajaraman and Ullman, 2012; Jannach et al., 2011).
These systems are nowadays used in a wide range of di�erent applications: they
can suggest for example movies, books, music, games or news to read. As we
will see shortly, the recommendations are personalized, in the sense that they
are based on an user's past preferences.
Recommender systems have become so popular as both service providers and
users bene�t from them (Ricci et al., 2011):

• From a service providers point of view, they allow to increase the num-
ber of items sold, as the suggestions are likely to meet the user's needs.
Good recommendations lead furthermore to a high users' satisfaction and
�delity, as customers know they can trust the system. Finally, service
providers can also better understand what the user wants, and use this
knowledge for other goals such as for advertisements and inventory pre-
diction.

• For users, on the other hand, recommender systems allow to always dis-
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cover new and very di�erent items that were suggested based on his/her
previous past history. Due to the huge size of modern online catalogs it is
in fact di�cult to explore them in a principled way and to �nd the right
items. The more the user interacts with the system, the more data is
available to improve the quality of the recommendations.

The machine learning techniques usually employed for recommender systems
follow often a probabilistic approach to be able to deal with uncertainties in the
recommendations: if the system is in fact not sure if a suggestion is really good
for the user, then it should not be given.

2.2 The long-tail phenomenon

Due to a limited space in the shelves, physical shops such as bookstores can-
not display all the items in their catalog, and are therefore forced to show just
the most popular ones. Online systems, on the other hand, can make anything
that exists available to the customer. Anderson (2006) theorizes this from an
economical point of view, showing that this focus on a large amount of items
is part of the business model and a fundamental source of pro�t of online com-
panies such as Amazon. The term long tail was introduced to describe this
strategy of selling a large number of unique items in relatively small quantities
together with the few very popular items. A pictorial representation of the long
tail phenomenon is shown in Figure 2.1, where we can see that there exists a
power law relation between popularity and the items ordered according to their
popularity: in every catalog there is a small amount of very popular items (the
red area in the �gure) and a large number of less popular ones (green area).
While the main source of income of physical retailers comes from the red area,
the success of online companies is given by selling items in the whole spectrum.

This phenomenon leads to a very important di�erence between physical and on-
line shops when considering recommendations. Recommendations in the phys-
ical world are rather simple: as it is not possible to tailor the store to each
individual customer the best-selling strategy is that of showing (i.e. suggesting)
just the most popular items to the left of the vertical line in Figure 2.1. To
earn as much as possible, on-line companies on the other hand are forced by the
long tail phenomenon to create recommender systems that provide personalized
suggestions to their users: it is in fact not possible to show the whole catalog
at once, and furthermore we cannot expect users to have heard of each of the
items they might like.
It is interesting to see in Figure 2.2 how the online streaming provider Net�ix
recommends movies and tv series. The �rst thing one sees when accessing the
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Figure 2.1: The long tail. The red area represents few very popular items (e.g.
movies), while the majority of them are less popular and lie in the
green area. Recommender systems are built to suggest items on
the whole spectrum.

home page is a list of suggestions divided in two parts. On the top we �nd
"popular on Net�ix", i.e. very popular items belonging to the red area in Fig-
ure 2.1 such as Gossip Girl and Breaking Bad. On the bottom we �nd instead
the "top picks" for the user, hence elements mostly from the green area: we see
that in this case the items are not well known, but are personalized considering
the taste of the user (in this case romantic and comedy movies).

Figure 2.2: The recommender system used at Net�ix. On the top row we �nd
suggestions for very popular movies belonging to the red area of
Figure 2.1, while on the bottom one we �nd movies from the green
one as well.
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Figure 2.3: Example of utility matrix. Each user is represented by a row,
whereas each item is represented by a column; the grey squares
represent ratings.

2.3 Building the utility matrix

The only way to recommend items in a personalized manner, is that of gathering
some information on what the user likes. This is the purpose of the utility matrix,
that holds in its element (i, j) information about the degree to which user i likes
item j (Rajaraman and Ullman, 2012). This is usually a very sparse matrix, as
each user usually deals with just a small subset of the items, see Figure 2.3 for
an example. The goal of a recommender system is therefore that of predicting
the blanks in the utility matrix based on the values of the known entries, so
that it is possible to suggest to the user the items that he/she would probably
like.
There are two main ways to acquire data for the utility matrix:

• Explicit feedback. We can ask users to rate items. In this case the
utility matrix is also called user rating matrix. The main issue with this
approach is however that some users are rather lazy and not willing to
rate their items, to the detriment of the quality of their suggestions.

• Implicit feedback. We can infer whether a user likes an item analyzing
his/her behavior. This can be done for example in movie recommendation
assuming that users only see movies that they like. This approach has the
advantage that no direct feedback is required from the user, but on the
other hand the assumption made can be not completely true.
This rating system has only one value (e.g. a 1 in the utility matrix) that
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indicates that the user likes the item.

As both methods have pros and cons, hybrid solutions that combine them are
also well established. They are particularly important to face the cold start
problem, that may occur in the absence of enough data for newly created rec-
ommender systems or newly introduced users/items.

2.4 Types of recommender systems

Recommender systems can be broadly classi�ed in two groups:

1. In content-based systems for each item it is constructed a pro�le that
summarizes its most important characteristics (e.g. for movies: the direc-
tor, the actors, the year and the genre). Using the corresponding row of
the utility matrix we also build a pro�le for each user based on a weighted
vector of item features. The best-matching items are then recommended:
if a user has seen lots of modern action movies, then so will be the rec-
ommended ones. Due to these association properties it is however not
possible to suggest items that are very di�erent from the ones a user has
seen but that he/she still would like, i.e. discovery is penalized.

2. Collaborative �ltering systems on the other hand recommend items
that similar users like1. Therefore, we do not focus any longer directly on
user and item pro�les (that can be quite complex to construct) but rather
on the best way to de�ne a similarity among users. This approach mainly
su�ers from the cold start problem mentioned above, from its scalability
(as in systems with a huge number of users and items the comparisons are
very expensive) and �nally form the sparsity of the data. Collaborative
�ltering systems however allow users to discover very di�erent items, as if
two users have similar tastes then any item one user has liked will likely
provide a good suggestion for the other.
This class of algorithms is widely used for example in social networks
such as Facebook and LinkedIn to recommend new friends/connections
(Ricci et al., 2011). A collaborative �ltering algorithm known as matrix
factorization will be introduced in detail in chapter 5.

Also in this case it is possible to combine the two methods to overcome the
issues of the two approaches (hybrid systems).

1The process of identifying similar users and recommending what similar users like is called
collaborative �ltering.
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In practice recommender systems can be very complex if one wishes to model as
much as possible the behavior of real users. It is important to consider for exam-
ple that some users tend to give systematically higher/lower ratings compared
to the average or that some items are much more popular than others and tend
therefore to receive higher ratings (Paquet and Koenigstein, 2013). Also, as the
taste of an user and the popularity of an item change over time, a system that
takes temporal dynamics into account can lead to great improvements (Koren,
2009). Finally, very useful can also be the usage of implicit information such
as the browsing history of the customer or the time spent observing each item
(Pilászy et al., 2010).

2.5 The Net�ix data set

In October 2006 the American online DVD-rental service Net�ix released as part
of the "Net�ix prize" challenge a data set containing 100480507 ratings given
to 17770 movies by 480189 users (Bennett and Lanning, 2007)2. The purpose
of the challenge was that of improving its own recommender system, used to
suggest new movies to its users according to their previous ratings history. A
prize of 1 million US dollars was promised to the �rst team able to improve
Net�ix's system Cinematch by more than 10% in terms of Root Mean Square
Error (RMSE) on the test set.
The training set is constructed with data collected between October 1998 and
December 2005. Each training sample comprises two integer IDs for users and
movies respectively, a rating from 1 to 5 (integer) stars and the date of the
rating. The qualifying set contains 2817131 triplets with the ID of the user, the
ID of the movie and the date of the rating: the actual rating is not given to the
contestants but it is known only to the jury, as it will be used to �nd the best
performing team. The triplets in the qualifying set were selected among the most
recent ratings of a subset of the users in the training set. To determine their
progress maximum once a day the teams could upload their predicted ratings
for all the elements in the qualifying set. The RMSE of an unknown half of the
qualifying set (called quiz set) was then posted to the public leader board; the
results on the other half of the qualifying set (the test set) were not reported
in the leader board but were instead used to determine the �nal winner. The
prize was won after three years, in September 2009, by the BellKor's Pragmatic
Chaos team, that achieved a 10.06% improvement over Net�ix's recommender
system (Koren, 2009).
We will now provide a more detailed analysis of the data set, as it will be useful
in the evaluation of the recommender system developed in this thesis.

2See also www.net�ixprize.com.
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Ratings
An histogram of the ratings in the training set is shown in �gure 2.4. We see
that the number of low ratings (1 and 2 stars) is quite small, as expected from
the fact that a user tends to only see movies that he thinks he could like. The
mean rating is 3.6043 stars.
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Figure 2.4: Histogram of the ratings for the Net�ix data set.

Groups of Users
In any recommender system there will be di�erent types of users: some of
them will only rate few items whereas others may rate a big chunk of them.
It is however important that all the di�erent kind of users bene�t from the
recommendations, i.e. the system should provide high quality suggestions to all
of them. Following the same approach as in (Salakhutdinov and Mnih, 2008b)
we therefore divide all the users with a similar number of ratings in 9 groups,
and compute a separate RMSE for each of them. The number of users belonging
to each group is shown in Figure 2.5.
The average user has rated around 209 movies, but we see that there is a huge
variability in the data: some of the users have just one rating and one of them
has seen 17653 movies.

Groups of Movies
In a similar fashion, we can also divide the movies in groups according to the
number of ratings they have, see Figure 2.6. The intervals were chosen both to
have a big focus on rare movies and to have a bell-shaped histogram similar to
the one in Figure 2.5.
The average movie was seen around 5650 times, with some of them having just
3 ratings and the most popular ones with more than 200000 views.
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Figure 2.5: Grouping of the users in the Net�lx data set. We see for example
that around 2% of the users have given between 6 and 10 ratings.
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Figure 2.6: Grouping of the movies in the Net�lx data set.

In the next two chapters we will introduce some necessary machine learning
methods that will be needed in the development of the recommender system.



Chapter 3

MCMC Methods for

Bayesian Inference

3.1 The Bayesian perspective

Let us consider a set D of observed data, and the parameters q of a model
that we want to �t to it. We can make assumptions about the parameters
before observing the data through a prior probability p(q) independent form
D. The uncertainty in the parameters after we have seen the data can be then
represented by the posterior probability, calculated using Bayes' theorem as

p(q|D) =
p(D|q)p(q)

p(D)
. (3.1)

The quantity p(D|q) is called likelihood function, and represents the probability
of observing the data D given the set of parameters q. Note that with respect
to the parameters of the model the likelihood is not a probability but simply
a function, and its integral over q will not necessarily sum to one. Finally the
quantity p(D) is called normalizing constant, as it makes p(q|D) integrate to
one. For many of the most common models the value of p(D) is very di�cult to
obtain or even approximate, hence it will be important to develop methods that
do not depend on it but that are able to deal with the posterior distribution up
to a proportionality factor.
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The frequentist approach to perform inference of the model assumes that q is a
�xed vector, that is determined using some estimator. A widely used one is the
maximum likelihood (ML) estimator, in which a point estimate of q is obtained,
as the name suggests, using optimization techniques to �nd the value of q that
maximizes the likelihood function (equivalently, minimizing the negative log of
the likelihood function). This approach is often the simplest to implement, but
some problems arise as no assumption on the distribution of the parameters is
made: p(D|q) could be maximized by some parameters whose a priori prob-
ability is very low. For example, the parameters found by the optimization
procedure, could not even have a physical meaning. A closely related but im-
proved frequentist approach maximizes the probability of the parameters given
the data instead, i.e. the posterior distribution p(q|D) ∝ p(D|q)p(q). This is
called maximum a posteriori (MAP) estimate, and it takes into account the
prior distribution of the parameters through p(q).
Both the ML and MAP estimators provide a point estimate of the parameters,
that can be used for example to predict new outcomes. A Bayesian approach
on the other hand considers in all the calculations q as a random variable with
probability distribution p(q), i.e. no point estimate is obtained but the sum
and product rules of probability are used to consider all the possible values of
q weighted by their own prior probability.
Note that the prior distribution p(q) could be itself a parametrized distribu-
tion, and depend on some parameters Θ. It is of course possible to place a prior
distribution p(Θ) on Θ as well: we call this distribution hyperprior.

Example
In a simple linear regression model the output is modelled with a
linear combination of the input parameters plus a residual term:

y = qTx = q1x1 + . . . qDxD + ε .

Having N training examples (xi, yi), i = 1, . . . N , and with the as-
sumption of gaussian noise it can be easily shown (Bishop, 2006;
Murphy, 2012) that the maximum likelihood estimate of the param-
eters is given by

qML = (XTX)−1XTy ,

where X is a N × D matrix containing the training inputs in each
row and y is the N × 1 vector of training outputs.
Especially with data sets of limited sizes the ML estimate tends to
over�t, and a regularization term λ is often necessary. This can be
equivalently seen in a MAP framework as placing a gaussian prior
with mean zero and covariance matrix λI (where I is the identity
matrix) to the parameters:

qMAP = (XTX + λI)−1XTy .
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Given an estimate q̂ obtained for example as just shown with ML
or MAP and a new test input xnew, the predicted output can be
evaluated as

ynew = q̂Txnew .

As we are only interested in predicting a new outcome given the
input vector xnew, we do not necessary need to have a point estimate
of q. This is the main idea behind the Bayesian point of view, in
which the posterior distribution is evaluated using (3.1) and it is
obtained a predictive distribution p(ynew|D,xnew) instead of just a
single predictive value ynew:

p(ynew|D,xnew) =

∫
p(ynew|q,xnew)p(q|D)dq .

It is important to point out in particular that there is no dependence
on the parameters in the predictive distributions: they are in fact
integrated out. We can also exploit the new information on the
probability distribution of the output to deal in a more principled
way with the uncertainties in the estimate, for example calculating
the con�dence intervals.
For the considered linear regression model in particular, it is possible
to show that both the posterior and the predictive distribution have
a normal distribution (Bishop, 2006).

For many models of practical interest it will be unfeasible to calculate the pos-
terior distribution or to evaluate expectations with respect to this distribution
(e.g. the integral in the predictive distribution for the linear regression model).
This could be because of the complexity of the posterior distribution itself that
leads to non-analytic solutions of the integral and/or because the high dimen-
sionality of the problem in hand may prohibit numerical integration. To deal
with these situations there are two main families of approximation schemes:

• Stochastic techniques (sampling methods) draw samples from the poste-
rior distribution and approximate any expected value using a sample av-
erage. These methods have the nice property of producing exact results
given in�nite computational power, but they are computationally expen-
sive (hence they are mostly used for small-scale problems). Furthermore,
it is often di�cult to tune them and to assess their convergence. Among
this family of algorithms we �nd for example Markov Chain Monte Carlo
(MCMC) methods (Gilks, 1999).

• Deterministic techniques on the other hand, approximate analytically the
posterior distribution combining analytically convenient assumptions on
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its form or factorization (e.g. the posterior distribution is approximated
as a product of parametrized Gaussians) with optimization techniques.
They can never generate exact results but they scale really well to large
applications. Among these techniques we can �nd variational inference
(Bishop, 2006) and expectation propagation (Minka, 2001).

We will now give a theoretical introduction of sampling methods focusing mainly
on MCMC, as they will be used later on to sample from the posterior distribution
of the model parameters given the training data in our recommender system
application.

3.2 Sampling methods

As shown above, in most of the applications the posterior distribution is nec-
essary to compute expectations, for example in order to make predictions. We
now therefore consider the problem of evaluating the expectation of some func-
tion f(q) with respect to any probability distribution p(q). In our case, p(q)
represents a posterior distribution but we drop the dependence on the training
set D for notational convenience.
For continuous variables the expectation is given by

E[f ] =

∫
f(q)p(q)dq , (3.2)

whereas the integral is replaced by a summation for discrete variables. If we
have a set of independent samples q(r) drawn from the distribution p(q), where
r = 1, . . . R, the expectation in (3.2) can be approximated with an unbiased
estimatior obtained with a �nite sum

f̂ =
1

R

R∑
r=1

f(q(r)) .

Despite being conceptually straightforward, this families of methods usually re-
quire a lot of experience and �ne tuning to work properly. Any computing envi-
ronment can easily draw independent random samples from a simple posterior
distributions (e.g. the function randn in Matlab for Gaussians), but as soon
as the model used is slightly more complex no standard sampling algorithms
are known (Murphy, 2012). Several methods have been developed to allow the
evaluation of the expectation from any distribution, among them rejection sam-
pling, importance sampling, particle �lters and the already mentioned MCMC,
that will be the subject of the rest of the chapter. It is �nally worth noting that
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the main problem that arises when using these techniques is that the samples
that can be obtained from p(q) are usually quite far from being independent.
If the samples are too correlated they might not provide an accurate empirical
estimate of the distribution p(q), and the approximated value of the expectation
can be very di�erent from the real one.

3.3 Markov chains and MCMC methods

A stochastic process is a collection of random variables that represents the evo-
lution of a system over time. Stochastic processes represent the probabilistic
counterpart of deterministic systems, as instead of having just one possible so-
lution to the evolution of a system (such as for deterministic systems governed
by ordinal di�erential equations) there is some indeterminacy that is described
by probability distributions.

Markov chains are random processes characterized by a memoryless property,
in that the state of the Markov chain at time n+ 1 depends only on the state at
time n (we are therefore considering more precisely �rst order Markov chains).
This can be written in terms of a conditional distribution as

p(q(n+1)|q(1), . . . ,q(n)) = p(q(n+1)|q(n)) .

q(n+1) is therefore conditionally independent from q(1), . . . ,q(n−1). To fully
specify a Markov chain, one has to assign the probability density p(q(0)) of the
initial state and the transition probabilities Tn(q(n),q(n+1)) ≡ p(q(n+1)|q(n)).
We consider homogeneous Markov chains, that have the property that the tran-
sition distributions do not depend on the time instant n, i.e. Tn = T .
For a particular variable we can evaluate its marginal probability given the
marginal probability of the previous variable and the transition probabilities:

p(q(n+1)) =

∫
q(n)

p(q(n+1)|q(n))p(q(n))dq(n) .

A stationary or invariant distribution p(q) for a Markov chain has the property
that

p(q) =

∫
q′
T (q′,q)p(q′)dq′ ,

in other words if the marginal distribution at time n is given by p(q), then the
marginal distribution for all the following time instants will be p(q) (note that
a Markov chain can have more than one stationary distribution).
A su�cient condition for a distribution to be stationary is that it satis�es the
property of detailed balance:

p(q)T (q,q′) = p(q′)T (q′,q) .
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To prove this we just need to notice that∫
q′
p(q′)T (q′,q)dq′ =

∫
q′
p(q)T (q,q′)dq′ = p(q)

∫
q′
p(q′|q)dq′ = p(q) .

A Markov chain that satis�es detailed balance is de�ned as reversible. The
detailed balance equation says that the probability �ux from state q to q′ equals
the �ux from q′ to q, or equivalently that the �ux out of state q should be equal
to the �ux into q.
Starting from the initial state q(0), the stochastic process can be simulated by
moving to a new state according to the transition probabilities. A stationary
distribution of the Markov chain can be seen as the long term distribution of
the chain obtained simulating the process.

MCMC methods draw posterior samples by constructing a Markov Chain on
the parameter space whose stationary distribution is the distribution of interest
p(q). After some burn-in samples, we will eventually converge to the stationary
distribution of the chain and will visit the states with probability given by
p(q), i.e. the fraction of time spent in each state q is proportional to p(q).
However, we also have to require that the convergence is obtained for any choice
of the starting point: we want therefore a so called ergodic Markov chain. It
should be clear that an ergodic Markov chain can only have a single stationary
distribution, that can be called in this case equilibrium distribution. Under some
weak restrictions on the stationary distribution and the transition probabilities
an homogeneous Markov chain will be ergodic, see for example (Murphy, 2012)
for a detailed proof. Apart from the high computational power required, one
of the main issues with MCMC methods is that there are no standard ways to
assess the convergence of the chain to the stationary distribution.

3.4 The Metropolis-Hastings Algorithm

The �rst MCMC method that we introduce is the Metropolis-Hastings (MH)
algorithm (Metropolis et al., 1953; Hastings, 1970). Being in state q, it proposes
to move to a new state q′ with probability g(q′|q), where g is called the proposal
distribution (that needs to be easy to sample from). The proposed state is then
accepted with probability

α(q′,q) = min

{
1,
p(q′)g(q|q′)
p(q)g(q′|q)

}
= min

{
1,
p(q′)/g(q′|q)

p(q)/g(q|q′)

}
, (3.3)

otherwise the new state is set to the current one, i.e. the sample q is repeated.
As we will see shortly, this acceptance rate is necessary for detailed balance to
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be satis�ed.
A common choice for the proposal distribution is a Gaussian distribution cen-
tered on the current state, i.e. g(q′|q)) = N (q′; q,Σ). In this case the tuning
of the covariance matrix Σ is critical for an e�cient sampling procedure, espe-
cially when dealing with highly correlated distributions: a too small variance
would give high acceptance probabilities but not allow to explore thoroughly
the state space. On the other hand, if the variance is too high many of the
proposed steps will be towards regions of low probability density p(q) and the
acceptance rate would be really small. The sequence of states with Gaussian
proposals represents a random walk, and when necessary to avoid confusion the
algorithm is dubbed random walk Metropolis-Hastings. Taking L small steps in
random directions is likely to move the state just about

√
L steps away from

the starting point (Neal, 2010).
In the Gaussian case, and more in general for all symmetric proposal distri-
butions, i.e. g(q′|q) = g(q|q′), the acceptance probability is simply given by:

α(q′,q) = min

{
1,
p(q′)

p(q)

}
. (3.4)

We therefore notice that moves that lead to regions with higher density are
always accepted, whereas if q′ is less probable than q we move with a probability

given by p(q′)
p(q) . The extra term in (3.3) can be therefore seen as a compensating

the fact that the proposal distribution itself might favor certain states.
An appealing property of the MH algorithm is that the target distribution needs
to be known only up to a normalizing constant. If we consider the unnormalized
target distribution p̃(q) such that p(q) = 1

Z p̃(q), then the possibly unknown
normalizing constant Z cancels in the acceptance ratio:

α(q′,q) = min

{
1,

1
Z p̃(q

′)g(q|q′)
1
Z p̃(q)g(q′|q)

}
= min

{
1,
p̃(q′)g(q|q′)
p̃(q)g(q′|q)

}
.

We can therefore sample from a distribution with MH even if we do not know its
normalizing constant. To show that the target distribution p(q) is a stationary
distribution for the Markov chain we can for example prove that detailed balance
is satis�ed:

p(q)g(q′|q)α(q′,q) = min {p(q)g(q′|q), p(q′)g(q|q′)}
= min {p(q′)g(q|q′), p(q)g(q′|q)}
= p(q′)g(q,q′)α(q,q′) .
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3.5 Gibbs sampling

Gibbs sampling is a special case of the MH algorithm, where the proposal dis-
tributions are the exact conditional distributions of the target that we want
to sample from and thus the acceptance probability is always 1. At each step
only one of the variables is updated1 by drawing a value from the distribution
p(qi|q\i) of the variable qi conditioned on the values of all the remaining vari-
ables q\i. This procedure is then repeated by cycling over all the variables.
Having a 3 dimensional (this can be easily generalized to D dimensions) vector
qs at iteration s for example, and reading the symbol ∼ as "is sampled from"
we repeat until convergence the following:

1. qs+1
1 ∼ p(q1|qs2, qs3)

2. qs+1
2 ∼ p(q2|qs+1

1 , qs3)

3. qs+1
3 ∼ p(q3|qs+1

1 , qs+1
2 )

We need of course to be able to sample from the conditional distributions,
either directly or using other sampling methods such as rejection sampling or
slice sampling (Neal, 2000).
Gibbs sampling can be seen as a special case of the MH algorithm by considering
proposal distributions having the form gk(q′|q) = p(qk|q\k). Of course we will
have q′\k = q\k as only the kth variable is updated. The acceptance probability
is calculated as

α(q′,q) = min

{
1,
p(q′)gk(q|q′)
p(q)gk(q′|q)

}
= min

{
1,
p(q′k|q′\k)p(q′\k)p(qk|q′\k)

p(qk|q\k)p(q\k)p(q′k|q\k)

}
= 1 .

(3.5)
Even if all the steps are always accepted, this does not mean that the Gibbs
sampler will perform always well: as for the MH algorithm it su�ers from ran-
dom walk behavior and it mixes poorly when sampling from highly correlated
distributions.

3.6 Hamiltonian Monte Carlo

The key to the success of any method based on a Metropolis-Hastings ac-
cept/reject scheme is the usage of proposal distributions that allow long distance

1Gibbs sampling can be seen as the MCMC analog of the widely used optimization tech-
nique known as coordinate descent.



3.6 Hamiltonian Monte Carlo 21

moves that also have a high probability of being accepted. In this section we
will see how concepts developed in physics can be used to improve the sampling
procedure. We will �rst introduce these concepts from a purely physical point
of view and then show how these can be used when dealing with probabilities.

3.6.1 Hamiltonian mechanics

The classical way to study the motion of a particle with massm under the action
of a system of forces is through Newtonian mechanics: after computing the total
force Ftot exerted on the particle, its position q and momentum p over time2

are computed starting from Newton's second law of motion, i.e. Ftot = md2q
dt2 .

Hamiltonian mechanics on the other hand reformulates Newtonian mechanics
in a more general framework: the evolution of the system is uniquely described
given a function H(q,p) called Hamiltonian (Neal, 2010). For closed systems,
the Hamiltonian is simply the sum of the potential energy U(q) and the kinetic
energy K(p), i.e. H(q,p) = U(q) + K(p), and it represents the total energy
of the system. The motion of the particle is then obtained solving Hamilton's
equations:

dq

dt
=
∂H

∂p
(3.6)

dp

dt
= −∂H

∂q
. (3.7)

The partial derivatives of the Hamiltonian determine therefore how q and p
change over time. The joint space of position and momentum variables is called
phase space.
Hamiltonian dynamics has three fundamental properties that will justify its
usage in an MCMC setting to sample from the posterior distribution of interest:

1. Reversibility. The mapping Ts from the state (q(t),p(t)) at time t to
the state (q(t+ ε),p(t+ ε)) at time t+ ε is injective, and has an inverse,
T−s, obtained negating the time derivatives in (3.6) and (3.7). In other
words, if we applied the dynamics to return to the previous point we would
follow the same path.

2. Volume preservation. According to Liouville's Theorem, Hamiltonian
dynamics preserves volume in the phase space (q,p), or equivalently the
determinant of the Jacobian matrix of the transformation is one. If we

2In the simplest case p = mdq
dt
.
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apply the mapping to a region R in the phase space with volume V , the
image R′ of R will also have volume V . This means that the mapping can
distort the shape of R but not its volume (if one direction is stretched,
then one will be necessarily squashed).

3. Conservation of the Hamiltonian. The trajectories in the phase space
describe contours of constant total energy (Hamiltonian).

As in the majority of the problems an analytic solution to Hamilton's equa-
tions does not exist, it is necessary to discretize time and resort to numerical
approximations. The simplest method to approximate the solution to a system
of ordinary di�erential equations (ODE) with a given initial value is Euler's
method. For the i-th component of position and momentum (i = 1, . . . D) it
gives

pi(t+ ε) = pi(t) + ε
dpi
dt

= pi(t)− ε
∂U(q(t))

∂qi

qi(t+ ε) = qi(t) + ε
dqi
dt

= qi(t) + ε
∂K(p(t))

∂pi
,

where it was made use of (3.6) and (3.7) and the fact that in the Hamiltonian
only the potential energy U depends on q and only the kinetic energyK depends
on p. Iterating this procedure we can compute the position and momentum
variables at time t+ 2ε, t+ 3ε and so on. This method however returns a poor
approximation, as the discretized trajectory tends to diverge to in�nity.
Much better results can be obtained with the leapfrog method :

pi(t+ ε/2) = pi(t)− (ε/2)
∂U(q(t))

∂qi

qi(t+ ε) = qi(t) + ε
∂K(p(t+ ε/2))

∂pi

pi(t+ ε) = pi(t+ ε/2)− (ε/2)
∂U(q(t+ ε))

∂qi
.

After half a step for the momentum variables, we do a full step for the position
variables using the new momentum variables, and �nally we do the missing half
step for the momentum variables using the updated position variables. It is not
di�cult to prove that despite the approximation due to the discretization the
leapfrog method is such that the motion satis�es two of the properties introduced
above for Hamiltonian mechanics: it preserves volume exactly and it is reversible
by simply negating p, applying the same number of steps again and �nally
negating p again. The value of the Hamiltonian is no longer conserved, but it
is a good approximation of the true one (Neal (2010) shows that the error is of
order O(ε2)).
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3.6.2 Sampling using Hamiltonian dynamics

In the following we will show how Hamiltonian dynamics can be used to form
e�cient proposal distributions for a Metropolis-Hastings sampler, that allow
large moves in parameter space while keeping a high acceptance rate. Thanks
to this approach we will be able to overcome two of the main shortcomings of the
original Metropolis-Hastings algorithm, namely the random walk behavior and
the poor mixing obtained in case of highly correlated variables. This method
can be applied to any distribution over continuous variables for which we can
easily compute the gradient of the (unnormalized) log-posterior with respect to
the state variables. We see that as for optimization techniques, for sampling as
well it is convenient to use this �rst order information if available.

The main idea behind this algorithm, known as Hamiltonian Monte Carlo
(HMC) or Hybrid Monte Carlo (Neal, 2010; Girolami and Calderhead, 2011),
is to de�ne an Hamiltonian function in terms of the target probability distribu-
tion, and move a sample from this distribution as if it was a particle in space
following the corresponding Hamiltonian dynamics.
To sample a random variable q ∈ RD from the probability distribution p(q), we
�rst have to de�ne an independent auxiliary variable p ∈ RD, that is given a
Gaussian density p(p) = N (p; 0,M). Due to independence, the joint density
can be written as p(q,p) = p(q)p(p). For notational convenience, we also de�ne
the log-probability distribution we want to sample from as L(q) = log p(q). The
negative joint log-probability is then

H(q,p) = −L(q) +
1

2
log
(
(2π)D det(M)

)
+

1

2
pTM−1p

and, ignoring the constant term, it can be interpreted as an HamiltonianH(q,p)
with potential and kinetic energy respectively

U(q) = −L(q)

K(p) =
1

2
pTM−1p .

The Hamiltonian represents the total energy of a closed system, in which q is
the position of the particle in space. Thanks to the quadratic kinetic term, the
auxiliary variable p can be seen as a momentum variable, and the covariance
matrix M as a mass matrix.
HMC samples from the joint distribution p(q,p) using a Gibbs sampling scheme
with auxiliary variables p: we are only interested in the samples q, that will be
then marginally distributed according to p(q). The Gibbs sampler works as fol-
lows: �rst, given the position and momentum (qn,pn) at time n, the momentum
is updated drawing a sample from the correct conditional distribution

pn+1|qn ∼ p(pn+1|qn) = p(pn+1) = N (pn+1|0,M) ,
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where it was used the independence of q and p. The variable qn+1 is then
sampled from the conditional distribution p(qn+1|pn+1) with the Metropolis-
Hastings algorithm: a deterministic proposal distribution is de�ned by simulat-
ing the behavior of the physical system evolving under Hamiltonian dynamics
and with initial position (qn,pn+1). Given the Hamiltonian, we can in fact
solve Hamilton's equations

dq

dt
=
∂H

∂p
= M−1p

dp

dt
= −∂H

∂q
= ∇qL(q) .

and follow a trajectory to obtain a new pair (q∗,p∗), that is accepted with
probability

α = min

(
1,

e−H(q∗,p∗)

e−H(qn,pn+1)

)
= min

(
1, e−H(q∗,p∗)+H(qn,pn+1)

)
.

It is worth pointing out that in this case the proposal distribution is not a ran-
dom walk but is deterministic: it is in fact the solution of a system of nonlinear
di�erential equations. From a probabilistic point of view, this can be justi�ed
using for the proposal distribution a Dirac distribution. This deterministic com-
ponent will propose moves along the isocontours of the energy (Hamiltonian) in
the phase space, whereas the random draws of the momentum from the exact
conditional distribution will change the energy levels.

Validity of the proposed method

To use the proposals derived from Hamiltonian dynamics in the MCMC scheme
we need to make sure that the moving particle is always a sample from the
desired target distribution, i.e. that the Gibbs sampler produces an ergodic,
time reversible Markov Chain satisfying detailed balance and with stationary
marginal density p(q). Fundamental to prove this are the �rst two properties of
Hamiltonian mechanics introduced in section 3.6.1; the third property, despite
not being necessary for the correctness of the method, is fundamental for an
e�cient sampling scheme:

1. Reversibility. As Hamiltonian dynamics is reversible, so will be the de-
�ned Markov Chain (detailed balance is respected), and this is a su�cient
condition for the target distribution to be stationary.

2. Volume preservation. Thanks to this property we do not need to take
into account any change in volume in the acceptance probability α of the
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MH updates. If the volume was changing, on the other hand, we would
have to compute the determinant of the Jacobian matrix of the mapping
and include it in the acceptance probability (this computation can be
rather complex).

3. Conservation of the Hamiltonian. If the trajectories in the phase
space exactly conserve the Hamiltonian (hence we are moving along iso-
contours of equal joint density), then the acceptance probability α is al-
ways one.

As already said, for practical applications of interest Hamilton's equations do
not have an analytic solution3, and only discretized approximations obtained
with numerical methods are available. However, not all the existing numerical
integration schemes can be applied to the problem in hand, as we have seen
that reversibility and volume preservation are necessary for a correct algorithm.
Luckily, as seen in section 3.6.1, these two properties are satis�ed by the leapfrog
integrator : in this case the proposed sample (q∗,p∗) for the MH algorithm is
obtained running the leapfrog method starting from (qn,pn+1) for L steps of
width ε. Due to integration errors, using the leapfrog integrator method the
Hamiltonian is not exactly conserved, but it is still close to the true value,
giving therefore a high acceptance probability. This error can be also controlled
tuning properly (manually or automatically) the step size ε and the number of
integration steps L. As the deterministic proposal distribution will point around
the same direction for several leapfrog steps, HMC can lead to potentially very
large moves while keeping a much higher probability of acceptance with respect
to a random walk Metropolis-Hastings.

Tuning of HMC

There are three main parameters that need to be tuned to use HMC, namely
the step size ε, the number of leapfrog steps L done at each iteration and the
mass matrix M of the momentum auxiliary variable.
L and ε can be tuned either manually with some pilot runs on a validation
set or in an automated way (Ho�man and Gelman, 2014). Accurate tuning is
essential:

• If the step size ε is too low than it is not possible to explore completely the
whole space unless a really high number of steps are used (with obvious
ine�ciency). On the other hand, a too big ε can lead to an unstable
algorithm that su�ers from a low acceptance rate.

3For Gaussian target distributions an analytic solution can be found.
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• If the number of leapfrog steps L is too small there will be slow mixing
due to random-walk behavior, whereas if it is too high it will return to
points already seen (double-back behavior).

It is worth noting that an acceptance rate of 1 is not the optimal choice, as
this would mean for example that ε could be increased to move even further in
the phase space. Neal (2010) shows that the optimal acceptance rate should be
around 0.65. One can also consider a number of burn-in samples to avoid highly
correlated proposed samples, not too high though for an e�cient implementa-
tion.
Picking the right M is essential for a performing algorithm, as its diagonal terms
have to re�ect the scale of the sampled momentum variables and the o�-diagonal
terms their correlation: a simple default choice using a (possibly scaled) identity
matrix will give poor results for highly correlated variables. Apart from using
some heuristics that rely on the knowledge of the marginal variance of the tar-
get density obtained with several pilot runs (Neal, 2010), a principled manner
to choose M is still unknown. This is one of the main reasons why despite all
the improvements it can give with respect to Metropolis-Hastings, Hamiltonian
Monte Carlo is still not widely used (Girolami and Calderhead, 2011).



Chapter 4

Improving Sampling Using

Di�erential Geometry

4.1 Di�erential geometry

The main focus of this section will be that of introducing some necessary back-
ground from di�erential geometry. The deep mathematical formalism required
in many of the de�nitions will be partly neglected, to give space to a more intu-
itive explanation of the concepts introduced. A more detailed presentation on
di�erential geometry can be found for example in (Amari and Nagaoka, 2000).

4.1.1 Manifolds

A manifold can be thought intuitively as a multidimensional generalization of
a surface. More formally, an n-dimensional manifold S is a set that locally
acts like Rn (locally homeomorphic to the Euclidean space): for each point
q of the manifold there exists a one-to-one (bijective) mapping ϕ : S → Rn,
called a coordinate system, from an open set around q to an open set of Rn.
This means that we can specify any point q ∈ S as an n-dimensional vector
called the coordinate of the point, that is given by ϕ(q) = [ϕ1(q), .., ϕn(q)]. We
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assume ϕ to be a smooth function, hence the manifold S is di�erentiable. In the
following we will mostly focus on manifolds that are embedded in some higher
dimensional Euclidean space RD. We can therefore de�ne a parametrization of
an open neighborhood that includes q on S as

σ : Φ(⊆ Rn)→ Ω(⊆ RD)

θ 7→ q

Example
The unit sphere S3 is a 2-dimensional manifold1 embedded in R3,
formed by the set of points q ∈ R3 that are the solution of

q21 + q22 + q23 = 1 .

It can be parametrized in spherical coordinates as

q1 = σ1(θ1, θ2) = cos θ1 sin θ2

q2 = σ2(θ1, θ2) = sin θ1 sin θ2

q3 = σ3(θ1, θ2) = cos θ2

where θ1 ∈ [−π, π) and θ2 ∈ [0, π]. Note that a sphere is a manifold
as any of its points can be locally (in a neighborhood small enough)
seen as a plane in R2. This example will be extended in the rest of
the section and represents a simple and intuitive way to grasp the
new concepts introduced.

4.1.2 Tangent spaces

Informally, a tangent at a point q ∈ S is a vector that lies "�at" on the manifold.
It can be more precisely de�ned starting from the notion of curve in the manifold
passing in q, that is a smooth map

γ : (−ε, ε) ∈ R→ S
t 7→ γ(t)

with γ(0) = q ∈ S.
In the case of manifolds embedded in RD, the tangent vector to a curve in a
manifold can be de�ned as (Marriott and Salmon, 2000):

γ̇(0) =
d

dt
γ(t)|t=0 = lim

h→0

γ(h)− γ(0)

h
.

1In the rest of the thesis we will deal with (D − 1)-dimensional unit spheres SD. For
simplicity of calculations, in this example we will however restrict to the case D = 3.
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The tangent vector will be the best linear approximation in q to the curve
de�ned on the manifold. Due to the embedding, we have γ̇(0) ∈ RD.
Knowing what a tangent vector is, we can now de�ne the tangent space at
q, denoted as TSq, as the set of all tangent vectors to curves through q. To
compute a basis for TSq we use the above introduced parametrization σ, that
allows us to write all the curves γ on S as a composite function

σ ◦ γθ : (−ε, ε)→ Φ→ Ω ,

where

γθ : (−ε̃, ε̃) ∈ R→ Φ

t 7→ γθ(t)

is a curve de�ned on the parameter space Φ. Curves on S can therefore be
formed �rst de�ning a curve on the parameter space Φ and then mapping it
using σ to the open subset Ω of the manifold S.

Deriving σ◦γθ with respect to time, we see that any tangent vector will therefore
have the form

n∑
i=1

∂σ

∂θi

dθi
dt

and a basis for TSq will be {
∂σ

∂θi
, i = 1, . . . n

}
. (4.1)

TSq is hence a n dimensional subspace of RD, and it is possible to prove that
it is independent of the parametrization used (Amari and Nagaoka, 2000).

Example (continued)
The basis of the tangent space for the unit sphere discussed above
is given by

∂σ

∂θ1
= (− sin θ1 sin θ2, cos θ1 sin θ2, 0) ∈ R3

∂σ

∂θ2
= (cos θ1 cos θ2, sin θ1 cos θ2,− sin θ2) ∈ R3

4.1.3 Metric tensors and Riemmanian manifolds

The addition of a metric tensor to a manifold S allows us to de�ne, in the tangent
space TSq of a point q ∈ S, lengths of tangent vectors and angles between them,
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in a way that is invariant to a reparametrization of the coordinate system. It
can be seen as a generalization of the dot product of vectors in the Euclidean
space. As we will see, this will turn out to be the building block in the de�nition
of other geometric structures such as the length of a path in the manifold and
the geodesics.
We assume that an inner product (i.e. a metric) has been de�ned on the tangent
space TSq at each point q ∈ S. The inner product is a function

〈 , 〉q : TSq × TSq → R

that is linear, symmetric and positive-de�nite.
A metric tensor g on S assigns to each point q ∈ S an inner product: g : q 7→
〈 , 〉q. It is also required that the mapping varies smoothly across the manifold
with q. Finally, we note that it is possible to consider an in�nite number of
metric tensors for S, in other words the structure of g is not naturally derived
from S. If a manifold S is equipped with a metric tensor g, we de�ne the pair
(S, g) as a Riemannian manifold.
If we now introduce a basis for the tangent space such as the one in (4.1)
(that was derived after introducing a parametrization θ of the manifold) we can
calculate the components of the inner product for that particular basis:

gij =

〈
∂σ

∂θi
,
∂σ

∂θj

〉
q

i, j = 1, . . . n .

As using coordinate vectors any vector X,Y ∈ TSq of the tangent space can be
expressed in terms of the basis, i.e.

X =

n∑
i=1

Xi
∂σ

∂θi
, and Y =

n∑
j=1

Yj
∂σ

∂θj
,

then the value of the inner product can be simply expressed as

〈X,Y〉q =

n∑
i=1

n∑
j=1

gijXiYj .

We can now therefore de�ne the length of a vector X tangent to the manifold

in q as ||X|| =
√
〈X,X〉q.

The calculation above can be also expressed in matrix form, de�ning G as the
n× n matrix whose (i, j)-th element is given by gij :

〈X,Y〉q = [X1, . . . Xn]G[Y1, . . . Yn]T .

Note that, due to the properties of the inner product, G will be a positive de�nite
symmetric matrix. Conversely, we can also proceed the other way round: given
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a parametrization θ and a n × n symmetric positive de�nite matrix G, then
the metric tensor on S that has gij as components is uniquely determined. The

metric tensors G̃ relative to a di�erent coordinate systems can be found starting
from G using some simple di�erential relations involving the transformation, see
(Amari and Nagaoka, 2000) for more details.

Example (continued)
The metric tensor for the sphere S3 is easily found starting from the
basis of the tangent space already computed. Assuming the standard
Euclidean dot product in R3 as the inner product for the tangent
space we have:

g11 =

〈
∂σ

∂θ1
,
∂σ

∂θ1

〉
q

= sin2 θ2

g12 =

〈
∂σ

∂θ1
,
∂σ

∂θ2

〉
q

= 0

g21 =

〈
∂σ

∂θ2
,
∂σ

∂θ1

〉
q

= g12 = 0

g22 =

〈
∂σ

∂θ2
,
∂σ

∂θ2

〉
q

= 1 .

The metric tensor for this Riemannian manifold and with the above
de�ned parametrization is therefore

G =

[
sin2 θ2 0

0 1

]
.

4.1.4 Geodesics

Having de�ned the metric tensor, the length of a curve γ : [a, b] → S can be
calculated as

||γ|| =
∫ b

a

∣∣∣∣∣∣∣∣dγdt
∣∣∣∣∣∣∣∣dt .

When dealing with manifolds the apparently simple task of �nding the short-
est path between two points is rather complex. The main issue is that when
considering points that are far from each other, one has to take into account
that their tangent spaces will be de�ned by two di�erent sets of basis, that will
also lead to di�erent formulations of local geometries. The minimization of the
length of the curves connecting the two points requires therefore to de�ne a way
to compare local geometries at two di�erent points, giving rise to the notions of
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(a�ne) connections, parallel transport and covariant derivatives.2

In the 3-D world we live in, the shortest path between two points, called geodesic,
is a straight line, where by straightness of the line we mean that the vectors
tangent to it are always parallel to some �xed direction. When dealing with
Riemannian manifolds a geodesic is de�ned to be a curve whose tangent vectors
remain parallel if they are transported along it (a rigorous de�nition requires
the concept of a�ne connection). If the connection used is the Levi-Civita con-
nection induced by the metric tensor and using the Christo�el symbols, then
the geodesic will also be the (locally) shortest path between the two points. To
�nd a geodesic, it is necessary to solve the system of di�erential equations

d2θi
dt2

+
∑
k,l

Γikl
dθk
dt

dθl
dt

= 0

where the Christo�el symbols Γikl depend on the metric tensor and the parametriza-
tion:

Γikl =
1

2

∑
m

gim

(
∂gmk
∂θl

+
∂gml
∂θk

− ∂gkl
∂θm

)
.

The solution of this system will return a curve γθ on the parameter space, that
if mapped with the function σ will return the geodesic on S.
From a physical point of view geodesics can be interpreted as the motion of a
free particle in a manifold: as there are no external forces the path followed
by the particle is only determined by the bending of the surface, and the only
energy acting on it is the kinetic one.

Example (continued)
Solving the system above, it is possible to prove (Byrne and Giro-
lami, 2013) that the geodesics for the sphere are the great circles,
i.e. the intersection of the sphere and any plane passing through
the center of the sphere. Given an initial position s(0) ∈ RD and
an initial velocity ṡ(0) in the tangent space (orthogonal to s(0)), a
great circle is given by

s(t) = s(0) cos(αt) +
ṡ(0)

α
sin(αt) ,

where α = ||ṡ(0)||.

2A detailed presentation of these topics is out of the scope of this thesis, the interested
reader is referred to (Amari and Nagaoka, 2000).
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4.2 Information Geometry

In the following we will see how concepts from di�erential geometry can be ex-
tended to probability distributions, de�ning the �eld of information geometry.
These concepts will be then used in sections 4.3 and 4.4 to improve the Hamil-
tonian Monte Carlo sampler introduced in section 3.6.
Let us assume that we are given a parametrized density p(y|q), with q an
n × 1 parameter vector. For notational simplicity we de�ne the log-likelihood
L(q) = log p(y|q). The score function is given by ∇qL(q) and intuitively it in-
dicates how sensitively L(q) depends on its parameters. The (expected) Fisher
Information Matrix G(q) is de�ned as the covariance of the score:

G(q) = cov(∇qL(q)) .

Rao (1945) discusses how it is possible to de�ne a notion of distance between two
distributions. He de�nes the distance between the probability density evaluated
at q and at q + dq as

χ2(dq) =

∫
[p(y; q + dq)− p(y; q)]2

p(y; q)
dy .

In particular, he shows that a �rst order approximation to χ2(dq) is given by

χ2(dq) ≈ dqTG(q)dq .

Je�reys (1948) approximates the KL divergence (Bishop, 2006) in a similar
manner:

D(q||dq) =

∫
p(y; q + dq) log

p(y; q + dq)

p(y; q)
dy ≈ dqTG(q)dq .

As by construction G(q) is a n×n positive de�nite symmetric matrix, it can be
seen as the metric tensor of a Riemannian manifold on the n-dimensional param-
eter space of the distributions. Each point q on the manifold represents a dis-
tribution, forming therefore a so called statistical manifold. From the quadratic
form obtained with a �rst order expansion of the quantities above we see that
the density functions do not reside in an Euclidean space, but rather in a Rie-
mannian manifold with metric tensor G(q) and other geometric characteristics
such as invariances, connections and geodesics.

Example
The 1-dimensional normal distribution N (µ, σ2) has 2 parameters,
namely the mean µ and the variance σ2: it lies therefore in a 2-
dimensional Riemannian manifold given by the metric tensor (the
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Fisher Information Matrix)

G(q) =

[
σ−2 0

0 2σ−2

]
,

where q = [µ, σ]. A �rst order approximation of the distance is given
by

dqTG(q)dq =
(dµ2 + 2dσ2)

σ2
,

and hence the space is hyperbolic. This means for example that the
distribution N (1, 2) is closer to N (1, 3) than N (1, 1).

4.3 Riemann manifold Hamiltonian Monte Carlo

The geometric structure given by the metric tensor de�ned by the Fisher infor-
mation matrix can be employed in MCMC methods to counteract some of the
problems typically encountered. As pointed out in section 3.6, one of the main
issues when using Hamiltonian Monte Carlo is the di�cult tuning of the mass
matrix M, that is extremely important for a good convergence of the sampler.
Girolami and Calderhead (2011) show that if the (position dependent) expected
Fisher information matrix G(q) is used instead of the �xed mass matrix M
many of the shortcomings of HMC can be addressed. The introduced algorithm
is the Riemann manifold Hamiltonian Monte Carlo.
As it is shown in (Amari and Nagaoka, 2000), the score ∇qL(q) has zero mean
and the (i, j)-th element of G(q) can be written under mild regularity conditions
as

Gij(q) = Ey|q

[(
∂

∂qi
L(q)

)(
∂

∂qj
L(q)

)]
= −Ey|q

[
∂2

∂qi∂qj
L(q)

]
.

We can therefore interpret what Girolami and Calderhead (2011) do as exploit-
ing second order information in their sampler. This is similar to what happens in
optimization techniques, where if possible the Hessian matrix is used to achieve
a better convergence (Nocedal and Wright, 2006).

The algorithm is an extension of Hamiltonian Monte Carlo in the case of paths
constrained in a manifold. The main di�erence is that the covariance structure of
the auxiliary Gaussian momentum variable is equal to the metric tensor G(q) in
the current position q. The joint log density, or Hamiltonian H(q,p), is de�ned
as before:

H(q,p) = −L(q) +
1

2
log
(
(2π)D det(G(q))

)
+

1

2
pTG(q)−1p . (4.2)
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Note that in this case the term that derives from the normalizing constant of
the Gaussian distribution depends on q and is therefore no longer constant over
the whole parameter space. This means that we cannot neglect it, but as it
is position-dependent it has to be included in the potential energy term. It is
easy to prove that if we manage to obtain (q,p) samples from the joint density,
then the set of sampled q will form an empirical approximation of the desired
density. If we marginalize over the auxiliary variables p we get in fact∫

e−H(q,p)dp =
eL(q)√

(2π)D det(G(q))

∫
e−

1
2p

TG(q)−1pdp = eL(q) = p(q) .

The same Gibbs sampler introduced for HMC is used in this case as well, hence
�rst the momentum is sampled from the conditional distribution p|q and then a
new proposal for a Metropolis-Hastings sampler is found following a trajectory
obtained solving Hamilton's equations. It turns out that in this case the trajec-
tories are (local) geodesics of the manifold (Girolami and Calderhead, 2011).
As the kinetic term depends on the position as well, in this case the Hamilto-
nian is no longer separable: the leapfrog integrator therefore cannot be used
in the numerical evaluation of the paths, as detailed balance would no longer
be respected. To overcome this problem, Girolami and Calderhead (2011) use
an extension of the leapfrog integrator which is semiexplicit (i.e. the update
equations are de�ned implicitly and need to be solved with some �xed point
iterations) but that satis�es reversibility and volume preservation, giving there-
fore a correct sampler.

Riemann manifold Hamiltonian Monte Carlo manages to exploit the geometric
structure induced on the manifold by the metric tensor G(q). We can now get an
insight on why Hamiltonian Monte Carlo may have problems: it in fact implicitly
assumes that the metric structure of the parameter space is position independent
and given by the �xed metric tensor M. If M is given by the identity matrix,
for example, the whole parameter space is considered as Euclidean.

4.4 Geodesic Monte Carlo

Riemann manifold Hamiltonian Monte Carlo manages to exploit the geometric
structure induced on the manifold by any positive de�nite matrix G(q). This
means that we can de�ne other metrics than the one obtained with the expected
Fisher information matrix.
Geodesic Monte Carlo (GMC) applies Riemann manifold Hamiltonian Monte
Carlo techniques to distributions that are themselves de�ned over a manifold
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embedded in the Euclidean space, using the metric tensor that is implicitly
imposed by the constraints (Byrne and Girolami, 2013).

Example
All the points belonging to a von Mises-Fisher distribution are con-
strained to be on an hypersphere (a detailed introduction to this
distribution will be given in section 6.3). As we have seen in the
previous sections, when the embedding space is R3 the metric tensor
using spherical coordinates is given by

G =

[
sin2 θ2 0

0 1

]
.

When using distributions constrained on an embedded manifold, MCMC tech-
niques are the preferred way to perform inference, as the normalizing constants
are usually intractable or very expensive to evaluate and therefore standard
methods such as rejection sampling cannot be easily implemented. Byrne and
Girolami (2013) show that the same concept of Riemann manifold Hamiltonian
Monte Carlo can be applied, and consider therefore the Hamiltonian de�ned in
equation (4.2):

H(q,p) = − log(p(q)) +
1

2
log
(
(2π)D det(G(q))

)
+

1

2
pTG(q)−1p .

If the target distribution is de�ned with respect to the Hausdor� measure3 of
the manifold (this will be the case in our recommender system application),
then the �rst two terms of the above Hamiltonian can be combined together:

H(q,p) = − log(pH(q)) +
1

2
pTG(q)−1p ,

where the H in pH(q) indicates that the Hausdor� measure is being considered.
As seen in section 4.3, proposals for a Metropolis-Hastings sampler with a high
acceptance rate can be obtained solving Hamilton's equations with a generalized
leapfrog integrator. In the case case of distributions de�ned on a manifold for
which the form of the geodesics is known, it is however more convenient to "split
the Hamiltonian" before solving the equations (Neal, 2010):

H(q,p) = H [1](q,p) +H [2](q,p) (4.3)

3The reference measure in probability theory (e.g. to compute normalizing constants)
is obtained with the Lebesgue integral (a generalization of the standard Riemann integral
to a broader class of functions). The Lebesgue measure can be further generalized using
the Hausdor� measure, particularly useful to measure submanifolds embedded in RD. A
relatively simple relationship between these two measures exists, see (Diaconis et al., 2011)
for more details.
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where

H [1](q,p) =− log(pH(q))

H [2](q,p) =
1

2
pTG(q)−1p .

Considering each term in (4.3) as a distinct Hamiltonian we alternately simulate
their dynamics for some time step ε to obtain new proposals. It is possible to
prove that this scheme allows sampling from the desired distribution (Neal, 2010;
Byrne and Girolami, 2013).
More speci�cally, the proposed algorithm is as follows:

1. Sample an initial momentum p0 from N (p0; 0, G(q0)).

2. Run L iterations of the following integrator to get a proposal (qT ,pT ):

(a) Solve H [1] for a period of ε/2.
Due to the absence of a kinetic term Hamilton's equations are
given by

d

dt
q = 0

d

dt
p = ∇q log pH(q) .

The position variable therefore does not change and we get just
a linear update of the momentum p:

p← p +
ε

2
∇q log pH(q) .

(b) Update following for a time interval ε the path due to H [2].
Due to the absence of a potential term the trajectory followed
will be a geodesic (see section 4.1.4).

(c) Update again according to H [1] for a period of ε/2.

3. Use qT as new value with probability

min
[
1, e−H(qT ,pT )+H(q0,p0)

]
,

otherwise return q0.
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If Hamilton's equations can be solved analytically for both H [1] and H [2], the
implementation of the proposal mechanism will be then more e�cient: there is
no longer the need of using the �xed-point iterations of the generalized leapfrog
algorithm and to invert the matrix G(q). Also, the above algorithm can be
written as well by completely avoiding the computation of the metric tensor,
whose calculation can be rather cumbersome. In some of the manifolds of prac-
tical interest in fact, it exist an explicit form of the normal space to the tangent
space (in a sphere for example, the normal to the tangent space at q is q it-
self). In this case to constrain the momentum to be in the tangent space, it
is more convenient to subtract its projection on the normal space, rather that
calculating a basis for the tangent space.

A detailed example of application of the Geodesic Monte Carlo will be given in
chapter 7, where it will be used in the training phase of a recommender system.



Chapter 5

Matrix Factorization

Techniques for

Recommender Systems

5.1 Factorizing the user ratings matrix

Given the past users' history from the training set, it is possible to construct
the user ratings matrix R, whose element in row i and column j represents the
rating that user i has given to item j. If we denote with N the number of users
and with M the number of items in the catalog, then the user ratings matrix
has dimension N ×M . This matrix is usually very sparse, as each user is likely
to have rated just a small subset of all items. In the Netl�x data set for example
(see section 2.5) just around 100 millions out of 9 billions elements are present
(slightly more than the 1%), whereas the rest are missing.
The user ratings matrix can be factorized using two smaller dense matrices U
and V learned from the available elements of R, i.e. R = UTV +E, where E is
a residual term (see Figure 5.1a for an illustration). U and V are respectively
D × N and D ×M matrices, with typical values for the number of factors D
of, say, between 5 and 100. Each column of U is a D-dimensional vector ui
that represents a single user, analogously the columns vj of V represent the
items. The main idea behind this model is therefore that the preferences of a
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(a) Matrix factorization. (b) Example of latent features.

Figure 5.1: The user ratings matrix is decomposed as the product of UT and
V , that provide a latent factor representation for users and items
respectively.

user are are determined by a small number of unobserved/latent factors. Having
the user and item vectors, with a simple scalar product it is possible to predict
new ratings: the rating that user i would give to item j can be predicted as
r̂ij = uTi vj . To recommend the best new item ĵ to an user it is therefore
su�cient to compute a scalar product for each item and take the maximum
rating obtained:

ĵ = arg max
j

(uTi · vj) .

Each element of ui and vj can be seen as a latent feature learned from the
available data. In movie recommendations for example, an element could tend
to be higher both for action movies and for users that like action movies, giving
therefore a positive contribution in the prediction of the rating. Figure 5.1b
provides a simpli�ed illustration with two latent features. We see for example
that the vector representing Bob is oriented towards "recent" and "action",
meaning that he would probably like Iron Man 3, an action movie from 2013.
Note that in reality it is often not trivial or even impossible to �nd the meaning
of the latent features obtained with matrix factorization techniques, as a lot
of analysis and domain knowledge is required. Nevertheless, this latent feature
representation allows high quality recommendations, as proved by its usage in
the winning solution of the Net�ix prize (Koren et al., 2009).
As already said, U and V have to be learned from the available data, and
several matrix factorization models with di�erent assumptions and degrees of
complexity allow it. We will now introduce in detail and extend two of these
models, forming the basis for the recommender system developed in this thesis.
As we will use the Net�ix data set introduced in section 2.5 as a running example,
the "items" in our recommender system will be also denoted as "movies".
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5.2 Probabilistic Matrix Factorization

Given the available entriesR in the matrix R, we want to �nd an estimate for the
user and item matrices U and V, in such a way that r̂ij = uTi ·vj provides high
quality predictions. A standard way to factorize matrices is through Singular
Value Decomposition (Berry et al., 1995): in this case however it is not possible
to use it, as conventional Singular Value Decomposition is unde�ned when the
the knowledge about the matrix is incomplete, and addressing just the few
known entries would lead to over�tting. A common choice to �nd the factorizing
matrices is therefore to use the known elements of the matrix in the minimization
of the prediction error (Pilászy et al., 2010)

E(U,V) =
∑

(i,j)∈R

(rij − uTi vj)
2 + λu

N∑
i=1

||ui||2 + λv

M∑
j=1

||vj ||2 , (5.1)

where the regularization terms over the squared norm of ui and vj are intro-
duced to avoid the over�tting caused by the huge number of parameters of the
model1. Salakhutdinov and Mnih (2008a) provide a probabilistic interpretation
of this model, the Probabilistic Matrix Factorization (PMF). They show that
minimizing the error in (5.1) is equivalent to �nding a MAP solution for the
graphical model shown in Figure 5.2. The likelihood of the observed ratings is
given by

p(R|U,V, α) =

N∏
i=1

M∏
j=1

[
N (rij ; u

T
i vj , α

−1)
]Iij

, (5.2)

where Iij = 1 if user i has rated movie j, 0 otherwise. We assume therefore a
Gaussian observation noise (with mean uTi vj and precision parameter α) and
that the the ratings are conditionally independent given the user and movie
vectors. We further place spherical Gaussian priors for both user and item
vectors, assuming independence among users and among movies:

p(U|αu) =

N∏
i=1

N (ui|0, α−1u I), p(V|αv) =

N∏
i=1

N (vi|0, α−1v I) .

The equivalence with (5.1) can be proven by maximizing the log-posterior over
user and movie vectors:

log p(U,V|R, α, αu, αv) ∝ log p(R|U,V, α) + log p(U|αu) + log p(V|αv)

and setting λu = αu

α and λv = αv

α .

1We have (N + M) · D parameters: in the Net�ix case for example, considering D = 20
latent features we have (480189 + 17770) · 20 ≈ 10 millions parameters.
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Figure 5.2: Graphical Model for the Probabilistic Matrix Factorization.

A careful tuning of the regularization parameters λu and λv is required (e.g.
using cross-validation) as the model tends to over�t quite easily increasing the
number of iterations of the training phase or the number of latent features. Zhou
et al. (2008) however show that a robust choice that never (empirically) over�ts
the data is obtained making the regularization term proportional to the number
of ratings that a given user or movie has. More speci�cally, let us denote with
Ii the set of movies rated by user i and with Ni its cardinality, i.e. the number
of rating given by user i. Similarly, we use Ij andMj to indicate the set of users
that have rated movie j and its cardinality . The error function to minimize is
then given by

E(U,V) =
∑

(i,j)∈R

(rij − uTi vj)
2 +

N∑
i=1

λuNi||ui||2 +

M∑
j=1

λvMj ||vj ||2 . (5.3)

Note that in general we may want λu 6= λv; in practice however the choice
λu = λv works well and has the advantage that just one parameter has to be
found with cross-validation.
To minimize the prediction error (5.3), we �rst compute the partial derivative
of the error with respect to a single element k of the user vector ui:

∂E

∂uik
= 2

∑
j∈Ii

−(rij − uTi vj)vjk + 2λuNiuik . (5.4)

We can now either calculate the full gradient and use it in a stochastic gradient
descent approach (Salakhutdinov and Mnih, 2008a; Koren, 2009), or use Alter-
nating Least Squares (Bell and Koren, 2007; Zhou et al., 2008). We prefer the
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second technique as it gives rise to a very computationally e�cient embarrass-
ingly parallel problem, as each ui can be updated independently of the other
user vectors and each vi can be updated independently of the other movie vec-
tors.
Alternating Least Squares (ALS) alternates between two steps: in the U-step
the matrix V is �xed and U is recomputed, whereas in the V-step we �x U and
recompute V. Fixing one of the two matrices the optimization problem (5.3)
becomes quadratic and can be solved optimally. We will now only focus on the
U-step, as the V-step is analogous.
We �rst de�ne Vi = V(:, Ii) as the submatrix of V containing the columns
relative to the movies that user i has seen, and ri = R(i, Ii) the corresponding
training ratings. Setting (5.4) to zero we obtain

∂E

∂uik
= 0 ⇒

∑
j∈Ii

vjk(uTi vj) + λuNiuik =
∑
j∈Ii

vjkrij ,

and after some calculations and combining the results for the di�erent elements
k, we see that ui can be recomputed solving a regularized linear least squares
problem: (

ViV
T
i + λuNiI

)
ui = Vir

T
i .

The new value for ui can be therefore robustly found using standard solvers for
least squares problems. Note in particular that ui can be updated independently
from the others user vectors, and that the old value of ui is completely ignored,
i.e. we are actually performing a recomputation rather than an update. The
matrix factorization procedure with ALS can be summarized as follows:

1. Initialize V using some small random values.

2. For it = 1, . . . itMax

(a) Recompute the user vectors ui in parallel (i = 1 . . . N)

(b) Recompute the movie vectors vj in parallel (j = 1 . . .M)

Figure 5.3 shows for the Net�ix data set with D = 50 latent features how
the quiz (validation) error decreases during the training phase. It was used
λu = λv = 0.05, and this value was found using cross-validation on the quiz
set. The �nal quiz RMSE is 0.91033 whereas the test RMSE is slightly higher,
0.91122. Note in particular that due to the big number of parameters the
convergence is very fast and that thanks to the used regularizer the model does
not over�t.
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Figure 5.3: RMSE on the quiz set obtained with ALS. After the �rst itera-
tions in which the RMSE rapidly decreases, it stabilizes without
over�tting.

5.2.1 Modelling biases

To further improve the model it is important to consider that some users tend
to give systematically higher/lower ratings compared to the average or that
some items are much more popular than others and tend therefore to receive
higher ratings (Koren, 2009; Paquet and Koenigstein, 2013). To take this into
account we decided to extend the presented model introducing for each user
a bias parameter ci, for each movie a bias parameter dj and �nally removing
the overall mean rating µ (µ = 3.6043 for the Net�ix data set). The predicted
rating is then given by rij = uTi vj + ci + dj + µ, with the term uTi vj that does
no longer need to model the biases but can only focus on the true user-item
interactions. The error function (5.3) depends now also on the user and movie
biases, and can be rewritten as

Ẽ(U,V, c,d) =
∑

(i,j)∈R

(rij − uTi vj − ci − dj − µ)2 +

N∑
i=1

λuNi||ui||2+

+

M∑
j=1

λvMj ||vj ||2 + λb

 N∑
i=1

Nic
2
i +

M∑
j=1

Mjd
2
j

 ,

where the N × 1 vector c and the M × 1 vector d contain the introduced biases
and are regularized as before using Ni and Mj but with a common parameter
λb.
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The optimization of Ẽ is very similar as before: in the U-step we have for
example

∂Ẽ

∂uik
= 0 ⇒

∑
j∈Ii

−(rij − uTi vj − ci − dj − µ)vjk + λuNiuik = 0

and therefore (
ViV

T
i + λuNiI

)
ui = Vi[R

T
i − cie− d(Ii)− µe] ,

where e =
[
1 . . . 1

]T
.

In a similar way, to optimize the biases we set to zero the partial derivative of
the error with respect to the elements of c and d. Again, as the computations
are very similar for user and item biases, we only show the results for c:

∂Ẽ

∂ci
= 0 ⇒

∑
j∈Ii

−(rij − uTi vj − ci − dj − µ) + λbNici = 0

that leads to

ci =

∑
j∈Ii(rij − uTi vj − dj − µ)

Ni(1 + λb)
.

The algorithm is exactly as before with the exception that now after the U-step
we also optimize c and after the V-step we optimize d. A detailed analysis of
the results will be presented after having introduced a Bayesian extension of
this model, namely the Bayesian Probabilistic Matrix Factorization.

5.3 Bayesian Probabilistic Matrix Factorization

We will now introduce the Bayesian Probabilistic Matrix Factorization (BPMF)
(Salakhutdinov and Mnih, 2008b), a fully Bayesian treatment of the model de-
scribed in the previous section. We will therefore no longer look for a point
estimate of U and V but we will consider them as random variables in all the
calculations, making recommendations by averaging over all settings of param-
eters that are compatible both with the prior and the training data.
The graphical model of the BPMF can be seen in Figure 5.4. We use again

the likelihood function (5.2), already introduced for the PMF. Also in this case
we place Gaussian priors over the feature vectors, but to increase the predic-
tive power now we consider the means and the covariance matrices as random
variables:

p(U|µu,Λu) =

N∏
i=1

N (ui;µu,Λ
−1
u ) ,
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Figure 5.4: Graphical Model for the Bayesian Probabilistic Matrix Factoriza-
tion.

p(V|µv,Λv) =

N∏
i=1

N (vi;µv,Λ
−1
v ) .

We use Gaussian-Wishart hyperpriors (Bishop, 2006) for the user and movie
hyperparameters: the advantage of obtained with these hyperpriors is that they
are conjugate priors (in the case in which both the mean and the covariance
matrix are unknown) and this leads to analytic convenience. If we denote Θu =
{µu,Λu} and Θv = {µv,Λv}, we then have

p(Θu|Θ0) = p(µu,Λu|µ0, β0, ν0,W0) = p(µu|Λu,µ0, β0)p(Λu|ν0,W0)

= N (µu;µ0, (β0Λu)−1)W(Λu; ν0,W0)

p(Θv|Θ0) = p(µv,Λv|µ0, β0, ν0,W0) = p(µv|Λv,µ0, β0)p(Λv|ν0,W0)

= N (µv;µ0, (β0Λv)
−1)W(Λv; ν0,W0)
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where β0 ∈ R+, W is a Wishart distribution2 with ν0 degrees of freedom, W0

is the D×D scale matrix and Θ0 = {µ0, β0, ν0,W0}.
In the experiment it was used in particular µ0 = 0, β0 = 2, ν0 = D, W0 = I
and α = 2.
Using the Bayesian model in Figure 5.4 we are interested in the predictive dis-
tribution

p(rij |R,Θ0) =

∫ ∫
p(rij |ui,vj)p(U,V|R,Θu,Θv)

p(Θu,Θv|Θ0)d{U,V}d{Θu,Θv} . (5.5)

We therefore integrate out the user and item matrices and the model hyperpa-
rameters Θu and Θv. Due to the complexity of the posterior this integral is how-
ever not analytically tractable. We therefore resort to sampling methods, draw-
ing K samples {U(k),V(k)} from the posterior distribution over {U,V,Θu,Θv}
and approximating (5.5) as

p(rij |R,Θ0) ≈ 1

K

K∑
k=1

p(rij |u(k)
i ,v

(k)
j ) .

Similarly, to make predictions for the rating rij we can use the empirical ap-
proximation of the expected rating.

5.3.1 Inference using MCMC methods

The posterior samples are drawn using a Gibbs sampler (see section 3.5), as the
necessary conditional distribution will turn out to be rather simple to sample
from (due to the use of conjugate priors).
Salakhutdinov and Mnih (2008b) show that the posterior distribution of the
movie vectors vj given the rest of the variables has a Gaussian distribution

p(vj |R,U,Θv, α) = N (vj ;µ
?
i , [Λ

?
i ]
−1) , (5.6)

where

Λ?
i = Λv + αUjU

T
j

µ?i = (Λ?
i )[Λvµv + αUjrj ] .

2The Wishart distribution with ν0 degrees of freedom, a D × D scale matrix W0 and
normalizing constant Z is given by:

W(Λ; ν0,W0) =
1

Z
(det Λ)(ν0−D−1)/2 exp

(
−

1

2
Tr(W−1

0 Λ)

)
.
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Uj is de�ned as the submatrix of U containing the columns relative to the users
that have rated movie j, and rj contains the corresponding ratings. We note
in particular that the updates of the movie vectors are independent from each
other, and can be therefore performed really e�ciently in parallel.
As in (5.5) we are marginalizing over the hyperparameters of the gaussian prior,
we need to sample them as well. The conditional distribution of the movie
hyperparameters given the current value of V (it is independent from the rest
of the variables) is a Gaussian-Wishart distribution (Salakhutdinov and Mnih,
2008b)

p(µv,Λv|V,Θ0) = N (µv;µ
?
0, (β

?
0Λv)

−1)W(Λv; ν
?
0 ,W

?
0) (5.7)

with

µ?0 =
β0µ0 +M v̄

β0 +M
, β?0 = β0 +M ν?0 = ν0 +M

[W?
0]−1 = W−1

0 +M S̄ +
β0M

β0 +M
(µ0 − v̄)(µ0 − v̄)T

v̄ =
1

M

M∑
j=1

vj S̄ =
1

M

M∑
j=1

(vj − v̄)(vj − v̄)T

The update of the users vectors and hyperparameters is analogous. The neces-
sary posterior samples for the whole model can be therefore sampled with the
following scheme:

1. Initialize U1 and V1 using for example some small random values or
the MAP solution.

2. For t = 1, . . . T

(a) Sample the user and movie hyperparameters form
p(µu,Λu|U,Θ0) and p(µv,Λv|V,Θ0) respectively.

(b) Sample the user vectors ui (i = 1 . . . N) from p(ui|R,V,Θu, α)
in parallel.

(c) Sample the movie vectors vj (j = 1 . . .M) from
p(vj |R,U,Θv, α) in parallel.

As typical of MCMC methods, the calculations involved to �nd the posterior
distributions are quite long and tedious. We will now show as an example the
approach we used to derive the update of (5.6).
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Rather that working directly with p(vj |R,U,Θv, α) = p(vj |rj ,Uj ,Θv, α) it is
more convenient to start with the joint distribution of movie vectors and ratings:

p(vj , rj |Uj ,Θv, α) = p(rj |U,vj , α)p(vj |Θv)

=

N∏
i=1

[
N (rij ; u

T
i vj , α

−1)
]Iij N (vj ;µv,Λ

−1
v ) .

Taking the logarithm of p(vj , rj |Uj ,Θv, α) we can more easily combine the
Gaussian distributions. In fact, after some calculations and using matrices to
avoid the explicit presence of summations we get to:

log p(vj , rj |Uj ,Θv, α) ∝ −1

2
(rj−UT

j vj)
TαI(rj−UT

j vj)−
1

2
(vj−µv)TΛv(vj−µv)] .

Note that the constant terms derived from the normalizers of the Gaussians
can be neglected in this phase. We can now exploit the distributive property of
matrix multiplication to obtain after some rearrangements of the terms

log p(vj , rj |Uj ,Θv, α) ∝ −1

2

[
vj
rj

]T [
Λv + αUjU

T
j −αUj

−αUj αI

] [
vj
rj

]
+

[
vj
rj

]T [
Λvµv

0

]
.

We have therefore shown that the logarithm of the joint distribution p(vj , rj |Uj ,Θv, α)
is a quadratic form, meaning that the distribution will be a Gaussian: the ex-
ponent in a generic Gaussian distribution with mean µ and covariance matrix
Σ can be in fact written as

−1

2
(x− µ)TΣ−1(x− µ) = −1

2
xTΣ−1x + xTΣ−1µ+ const ,

giving a quadratic form with respect to x. To �nd the mean and covari-
ance/precision matrix of p(vj , rj |Uj ,Θv, α) we hence just need to equate

Λ = Σ−1 =

[
Λv + αUjU

T
j −αUj

−αUj αI

]
, Σ−1µ =

[
Λvµv

0

]
.

Calculating the analytic form of Σ using the formulas for the inverse of a parti-

tioned matrix (Bishop, 2006) and using it to compute µ = Σ

[
Λvµv

0

]
we �nally

get [
vj
rj

]
∼ N

([
vj
rj

]
;

[
µv

UT
j µv

]
,

[
Λ−1v Λ−1v Uj

Λ−1v Uj
1
αI + UT

j Λ−1v Uj

])
.

Note in particular that as the explicit form of the normalizing constant of a
Gaussian distribution is known given the the covariance matrix, we can neglect
the constant terms that we �nd in the calculations (as we did above) and still
get correct results.
Having obtained a Gaussian joint distribution, we can then easily derive (5.6)
using the well known formulas for the conditional distributions of a partitioned
Gaussian (Murphy, 2012).
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5.3.2 Modelling biases

As done in section 5.2.1, also for the Bayesian Probabilistic Matrix Factorization
we decided to extend the model by introducing biases (see Figure 5.5).
The likelihood function is in this case

p(R|U,V, α) =

N∏
i=1

M∏
j=1

[
N (rij ; u

T
i vj + ci + dj + µ, α−1)

]Iij
,

hence the form of (5.6) will change. De�ning cj as the vector containing the
biases relative to the users that have rated movie j, with calculations similar as
before we obtain

vj ∼ p(vj |R,U,Θv, c,d, α) = N (vj ;µ
∗, (Λ∗)−1)

with

µ∗ = (Λ∗)−1[Λvµv + αUj(rj − cj − dje− µe)]

Λ∗ = Λv + αUjU
T
j

We also need in this case to sample user and movie biases from their posterior
conditioned on all the other variables. We therefore modelled them as Gaussian
distributions, i.e.

ci ∼ N (ci;µc, σ
2
c ), dj ∼ N (dj ;µd, σ

2
d) .

This choice is partly justi�ed by inspecting the histogram of the biases obtained
with the MAP solution presented in section 5.2.1 (see Figure 5.6), and partly
due to analytic convenience.
The joint distribution of movie biases and ratings is given by

p(dj , rj |Uj ,V, c,Θd, α) =

N∏
i=1

[N (rij ; u
T
i vj + ci + dj + µ, α−1)]IijN (dj ;µd, σ

2
d)

and after long calculations similar to the ones shown before we �nally obtain

dj ∼ p(dj |R,U,V, c,Θd, α) = N (dj ;µd|rest, σ
2
d|rest) ,

where

µd|rest = µd +
σ2
dα

1 + σ2
dMjα

[eT rj −Mjµd − eTUT
j vj − eT cj −Mjµ]

σ2
d|rest =

σ2
d

1 + σ2
dMjα

.
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Figure 5.5: Graphical Model for the Bayesian Probabilistic Matrix Factoriza-
tion with biases taken into account.
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Figure 5.6: Histogram of the biases for the MAP solution. A Gaussian distri-
bution is �tted to it (ML estimates of mean and variance).
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5.4 Comparison of the results

We evaluate the performance of the recommender systems in terms of Root Mean
Squared Error (RMSE), that is de�ned over the Ntest test objects as:

RMSE =

√√√√ 1

Ntest

Ntest∑
n=1

(rn − r̂n)2 ,

where rn is the true test rating and r̂n the predicted one. The RMSEs obtained
with PMF and BPMF with di�erent numbers of latent features and both with
and without biases are shown in Table 5.1.

RMSE for the test set
D PMF PMF bias BPMF BPMF bias
8 0.9333 0.9248 0.9198 0.9173
20 0.9275 0.9162 0.9070 0.9065
50 0.9182 0.9113 0.8992 0.8994
100 0.9143 0.9098 0.8955 0.8957

Table 5.1: Test RMSE for di�erent values of D

Wee notice that:

• BPMF performs much better than PMF, as in the �rst case we are con-
sidering all the possible choices of the user and item matrices weighted by
their prior probability, and in the second one just a single value.

• The addition of biases in the model improves a lot the recommendations
for the PMF model. In the BPMF however the error slightly changes, and
it mainly decreases in lower dimensions.

• As expected, increasing D improves the results: we have in fact more
modeling power (the computational time however also increases).

In Figure 5.7 we show the RMSEs calculated separately for groups of users with
a similar number of ratings, as shown in section 2.5. It is also plotted the RMSE
that the naive algorithm of assigning to each movie its average rate would give
(movie average algorithm). We notice in particular that the less training data
a user has, the harder is to predict their ratings. The BPMF preforms much
better than the PMF for groups with a small number of ratings, whereas the
performance for the other groups is not too di�erent.
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Figure 5.7: Test RMSE for the di�erent groups of similar users.

We can gain more insight on the role of the biases looking at Figure 5.8. We
trained di�erent models of increasing complexity, starting from the ones that
only used biases (i.e. D = 0) and progressively adding new terms. As we can
see, the more complex models allow to improve the recommendations in terms
of RMSE. Also, the user-item interaction term uTi vj is fundamental to obtain
high-quality personalized recommendation.
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Chapter 6

Constraining Models to

Improve Recommendations

6.1 Introduction

Performing recommendations quickly is crucial in any recommender system:
users do not like to wait and tend to abandon after a bit of latency. Considering
also the other operations needed in the whole system pipeline, in practice one
has to do recommendations in as few milliseconds as possible.
This time constraint limits the quality of the suggestions achievable in large-
scale applications, as it is impossible to analyze e�ciently the whole catalog.
Recommender systems require in fact linear retrieval time to suggest with no
approximations a new item to an user. Having M items, to predict for ex-
ample the best movie for user i with a recommender system based on matrix
factorization techniques, we have to �nd the maximum of M inner products

ĵ = arg max
j

(uTi · vj) , (6.1)

leading therefore to O(M) processing time. This linear retrieval time is one of
the main bottlenecks in large-scale applications: to overcome this issue some
rather strong approximations that limit the number of items inspected are nec-
essary, leading therefore to worse suggestions. In music recommendations for
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example the catalog may contain several millions of items, way too many to be
analyzed e�ciently; one is therefore forced to focus the analysis for example just
on the genres the user listens to the most. Discovery is however key to a good
user experience and one important reason why people use recommender systems
(see the discussion about the long tail phenomenon in section 2.2). Hence, we
would like to be able to use the whole catalog and suggest songs that are very
di�erent from the ones the user has previously listened to, but that we are quite
certain he/she will like.
Note �nally that it is not possible to pre-compute the recommendations, as it
is a costly operation and in large scale applications there is a continuous �ow
of new data, meaning that the systems need to be retrained several times every
day to keep improving the quality of the recommendations.

6.2 Recommendations as a distance minimization

problem

Constraining all the item vectors to have �xed norm we can transform the
necessary maximization over inner products in a minimization over Euclidean
distances:

ĵ = arg max
j

(uTi · vj)

= arg max
j

(
1

2

(
||ui||2 + ||vj ||2 − ||ui − vj ||2

))
(∗)
= arg max

j

(
−||ui − vj ||2

)
= arg min

j
||ui − vj || .

The step denoted with (∗) is justi�ed by the imposed constraint of �xed ||vi||
and the fact that when doing recommendations to a particular user ||ui|| is �xed
as well. The best item can therefore be suggested looking among the movie vec-
tors for the nearest neighbor to the user vector ui.
Nearest neighbor search is a fundamental problem in many �elds (such as ma-
chine learning and computer vision) and several data structures have been de-
veloped to perform it e�ciently. A detailed analysis of these topics will be
presented in Chapter 8, for now it is su�cient to know that using them the
O(M) recommendation step can be performed much more e�ciently from the
computational point of view, O(logM) in the ideal case.
From a probabilistic point of view, the constraints can be imposed extending the
recommender systems presented in Chapter 5 with a �xed-norm prior over the
item vectors. The main issue one has to face when dealing with unconventional
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priors for recommender systems is the tractability of the inference procedure,
that cannot be as e�cient as when using for example conjugate exponential
models. It is therefore critical the development of an algorithm e�cient from
a computational point of view and that allows to keep the quality of the pre-
dictions almost unchanged, as it would be worthless to speedup the retrieval
process if the recommendations were much worse. The Von Mises-Fisher distri-
bution, presented next, is a possible choice for the prior, that leads in particular
to a very e�cient implementation of the training phase of the recommender
system.

6.3 The Von Mises-Fisher Distribution

The Von Mises-Fisher (vMF) distribution is the most important probability
density in directional statistics (Dhillon and Sra, 2003). Given a mean di-
rection µ and a concentration parameter κ, the Von Mises-Fisher distribution
vMF (x;µ, κ) is de�ned as follows:

p(x;µ, κ) = CD(κ) eκµ
Tx ISD (x) κ ≥ 0, ||µ|| = 1 . (6.2)

In (6.2), SD represents the D dimensional unit hypersphere (i.e. SD = {x ∈
RD|
√

xTx = 1}), IA is the indicator function of the set A, and the normalizing
constant CD(κ) is given by

CD(κ) =
κD/2−1

(2π)D/2ID/2−1(κ)
,

where Ip is the modi�ed Bessel function of the �rst kind and order p. Higher
values of κ increase the concentration of the distribution around the mean di-
rection µ, while κ = 0 gives an uniform distribution over the the D dimensional
unit hypersphere1.
Note in particular that the normalizing constant is de�ned with respect to the
Hausdor� measure, hence, to use the same notation of section 4.4, it would be
more correct to indicate the distribution as pH(x;µ, κ). To keep the notation
uncluttered in the following we will however remove the H from the distribution.
We can also generalize the distribution to be de�ned over the hypershere with

radius' length q, i.e. S(q)D = {x ∈ RD|
√

xTx = q}. The vMF distribution
becomes

p(x;µ, κ) = CD(κ) eκµ
Tx IS(q)

D

(x) κ ≥ 0, ||µ|| = q , (6.3)

1The concentration κ has a function similar to the one that the precision parameter (the
inverse of the variance) has for the Gaussian distribution.
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and it will be denoted as vMFq(x;µ, κ). In (6.3) the normalization constant
CD(κ) is di�erent from the one in (6.2), but its exact value has no interest for
us in the following.

6.3.1 Simulating a Von Mises-Fisher Distribution

A widely used algorithm to draw samples from a Von Mises-Fisher Distri-
bution is presented in (Wood, 1994). It is shown that the unit vector z =
([1−w2]1/2sT , w)T , where s is uniformly sampled from SD−1 an the scalar vari-
able w ∈ (−1, 1) from the density proportional to (1 − w2)(D−3)/2eκw (using
rejection sampling), is vMF (x; 0, κ) distributed (Ho�, 2009). Multiplying then
the obtained samples by any orthogonal matrix whose last column is µ, one gets
samples from a vMF (x;µ, κ) distribution, and �nally if we multiply them also
by the scalar q they become vMFq(x;µ, κ) distributed.
Figure 6.1 shows an example of this sampling procedure in the unit hypersphere
in R3 for two di�erent values of the concentration parameter κ. It is used the
Matlab implementation of Wood's algorithm of Banerjee et al. (2005). As ex-
pected, the higher is κ the more concentrated around the mean direction is the
distribution.
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Figure 6.1: Samples drawn from a von Mises-Fisher distribution with κ = 0
and κ = 20.
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6.4 Modelling biases

As shown in Chapter 5, introducing biases for both users and items in the model
can improve the quality of the recommendations. We would like therefore to be
able to include them in this constrained framework as well.
Due to time constraints and the complexity of the problem there will be just
some �rst empirical results regarding this problem in the following. For com-
pleteness we will now however give hints on what could be the starting point to
tackle this in future research. We envision two main options:

1. Similarly to the derivation in section 6.2 we can rewrite the scalar product
as follows (when suggesting an item to user i in this case apart from the
norm of its vector also its bias is �xed and can therefore be neglected):

ĵ = arg max
j

(uTi · vj + ci + dj + µ)

= arg max
j

(
1

2

(
||ui||2 + ||vj ||2 − ||ui − vj ||2

)
+ ci + dj + µ

)
= arg max

j

(
1

2

(
||vj ||2 − ||ui − vj ||2

)
+ dj

)
= arg max

j

(
||vj ||2 − ||ui − vj ||2 + 2dj

)
= arg min

j

(
||ui − vj ||2 − (||vj ||2 + 2dj)

)

Constraining the items vector and biases we can again write the problem
as a nearest neighbor search: if we now �x the quantity ||vj ||2 + 2dj we
get in fact

ĵ = arg min
j
||ui − vj || .

as before. The constraint could be imposed for example using a von Mises-
Fisher prior for the joint vector

wj =

 vj√
2dj

 .

The main issue with this approach might be that it is no longer possible
to specify a prior for the bias only as done in Chapter 5, i.e. we have no
direct control on the marginal distribution of dj and it could be quite far
from the reality.
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2. In practice a recommender system shows to the user not only a single
item, but a list of the best ones. If we were looking for the top 10 items
for example, we could �nd the top 30 ones using the same approach as in
section 6.2 (constraining just ||vj ||), use the bias term to rearrange them
and then taking the resulting top 10 items. In this case however we will
have to make sure that these procedure does not lead to poor suggestions
due to high biases not considered in the right manner.



Chapter 7

Constrained Bayesian

Probabilistic Matrix

Factorization

7.1 The model

As seen in section 6.2, e�cient recommendations can be achieved constraining
the movie vectors to have �xed norm. This can be done using a Von Mises-Fisher
distribution as a prior: if use a vMFq(vj ;µv, κ) of the form

p(vj |Θv) = CD(κ) eκµ
T
v vj IS(q)

D

(vj), Θv = {µv, κ} , (7.1)

then all the movie vectors will have norm q by construction.
We can therefore follow the same approach as in the Bayesian Probabilistic
Matrix Factorization (see section 5.3), in which we use this vMF prior over
the movie vectors instead of the Gaussian one. The graphical model for the
Constrained Bayesian Probabilistic Matrix Factorization is shown in Figure 7.1.
Note in particular that no hyperpriors are used for the von Mises-Fisher distribu-
tion: we will in fact impose for now a uniform distribution over the hypersphere
with radius q, i.e. all the directions have the same prior probability and κ = 0.
Due to the conditional independence properties of this graphical model, with
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Figure 7.1: Graphical Model for the Constrained Bayesian Probabilistic Ma-
trix Factorization.

respect to the BPMF's Gibbs sampler we only need to change one step, namely
the sampling of the movie feature vectors according to the new posterior distri-
bution. We analyze this in detail in the following.

7.2 Posterior distribution over the movie vectors

The joint distribution of movie vectors and observed ratings is given by

p(vj ,R|U,Θv, α) = p(R|U,vj , α)p(vj |Θv)

=

N∏
i=1

[
N (rij ; u

T
i vj , α

−1)
]Iij

CD(κ) eκµ
T
v vj IS(q)

D

(vj) ,

where N denotes the number of users and Iij is the indicator function that is
equal to 1 if user i has rated movie j, 0 otherwise. Taking the logarithm in the
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above formula we obtain:

log p(vj ,R|U,Θv, α) =

N∑
i=1

Iij
[
−1

2
log

2π

α
− α

2
(rij − uTi vj)

2

]
+

+ logCD(κ) + κµTv vj + log
(
IS(q)

D

(vj)
)
.

With some calculations it is possible to write the summation in terms of matrix
multiplications: let Ij = [I1j , I2j , . . . INj ] and Mj be the number of ratings for

movie j, i.e. Mj =
∑N
i=1 Iij . If we de�ne again Uj ∈ RD×Mj as the restriction

of the matrix U to the columns whose corresponding user has rated movie j
(in Matlab notation we have Uj = U(:, Ij)), and rj , R(Ij , j) as the 1 ×Mj

vector with the corresponding rates, we get

N∑
i=1

Iij
[
−1

2
log

2π

α
− α

2
(rij − uTi vj)

2

]
= −Mj

2
log

2π

α
−

N∑
i=1

Iij
α

2
(rij − uTi vj)

2

= −Mj

2
log

2π

α
− 1

2
(rj −UT

j vj)
TαI(rj −UT

j vj) ,

and �nally

log p(vj |R,U,Θv, α) ∝ −1

2
(rj−UT

j vj)
TαI(rj−UT

j vj)+κµ
T
v vj+log

(
IS(q)

D

(vj)
)
.

(7.2)
Drawing samples from this distribution is not as simple as for the BPMF, es-
pecially due to fact that we are now constrained to be in an hypersphere. In
the following we will show how this can be done using two di�erent MCMC
methods, and in particular the already introduced Metropolis-Hastings (MH)
algorithm and the Geodesic Monte Carlo (GMC).

7.2.1 Sampling using the Metropolis-Hastings algorithm

We recall that we have to sample from

p(vj |R,U,Θv, α) ∝ p(R|U,vj , α)p(vj |Θv) ,

where the prior over vj has a vMFq(x;µ, κ) distribution. As already said,
for our experiments we will use in particular a constant prior distribution (i.e.

κ = 0) over the hypersphere S(q)D ; a possible extension of the proposed algorithm
could make use of hyperparameters as well.
As we know how to draw samples from any Von Mises-Fisher distribution (see
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Section 6.3.1), a natural way to sample from the posterior of interest is using
the Metropolis-Hastings algorithm (see section 3.4) with a vMFq(µ̃j , κ̃) proposal
distribution where at iteration t we use as mean direction the current sample,

i.e. µ̃
(t)
j = v

(t−1)
j . Due to the presence of the inner product in (7.1) we see that

the proposal distribution is symmetric, leading to an acceptance probability of
the form (3.3). In particular, as the prior over the movie vectors is assumed
constant, the acceptance probability for the MH updates is reduced to (see
equation (7.2))

α = min

(
1, e

[
(rj−UT

j v
(t)
j )TαI(rj−UT

j v
(t)
j )−(rj−UT

j v
(t−1)
j )TαI(rj−UT

j v
(t−1)
j )

])
.

Starting from any initial state we would like to construct a Markov Chain that
allows us to explore the regions of high probability in the posterior distribu-
tion. Figure 7.2 shows an example of application of the MH algorithm being
constrained in a sphere in R3: we start from a random position (red cross in the
�gure) and slowly move on the unit hypershpere S3 towards the region of high
posterior probability.

Figure 7.2: Metropolis Hastings algorithm on an hypersphere withD = 3, κ̃ =
500. Many small steps are needed before getting to the high den-
sity region.

When using the Metropolis-Hastings algorithm there are some aspects one should
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be really careful about. On the one hand at each iteration we would like to move
a lot in the hypersphere, both to be able to escape quickly from a bad initial
starting point (as in Figure 7.2) and to explore completely the space. This re-
quires a small value for the concentration parameter κ̃. On the other hand, if
the proposal distribution is too broad (κ̃ too small) we will likely have small
acceptance probabilities and hence reject all the proposals. The best we can do
to overcome these issues is to have a rather high κ but introduce several burn-in
samples. In other words, we want to make several small steps that will hopefully
lead to the high density region in the beginning and to uncorrelated samples
once we are there. This will however increase the computational time.
Of course, the closest is the starting point to the region of interest the less
burn-in one has to introduce, as the chain starts early to return samples from
the desired stationary distribution. In our case one option is to start with the
vector with norm q that has the same direction as the MAP solution for the
unconstrained problem (that is obtained using Alternating Least Squares):

µ̃
(0)
j = qv̄MAP

j = q
vMAP
j

||vMAP
j ||

.

In particular it was taken q = median(||vMAP
j ||); more insights on why this is

a starting guess for q good enough will be provided in the next sections.

7.2.2 Sampling using Geodesic Monte Carlo

As the von Mises-Fisher distribution is de�ned on a hypersphere, i.e. a di�er-
entiable manifold, we can also use Geodesic Monte Carlo, previously introduced
in section 4.4. We know in fact both

• the gradient with respect to the random vector vj of the log-posterior
distribution (Petersen and Pedersen, 2012):

∇vj
log p(vj |R,U,Θv, α) =αUj(rj −UT

j vj) , (7.3)

• the geodesics of the hypersphere, that are given by the great circles (see
the example in section 4.1.4).

From the computational point of view these operation are very e�cient1, hence
as we will see it will be much faster to train the model with GMC than with

1Noting that αUj(rj−UT
j vj) = αUjrj−UjU

T
j vj we see that we can precompute the very

expensive matrix multiplication UjU
T
j just once for each sample, and not every "leapfrog"

step.
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MH. Also, in this case thanks to the proposal distributions obtained solving
Hamilton's equations and considering the metric tensor of the sphere we can
overcome several of the shortcomings of MH.
In Figure 7.3 we see the di�erence between the two algorithms sampling the
movie vectors of a model with D = 3. Both Markov Chains start from the same
random point and converge to the high density posterior region (we claim that
the chain has converged as the results obtained with both methods are similar;
of course however this cannot be proved formally). GMC however gets there just
after one sample, and starts therefore to return posterior samples much before
(less burn-in is needed). For the case D = 20 shown in Figure 7.4 we cannot
of have a nice visualization as in Figure 7.3. We can however plot just some
random components of the samples obtained with the Markov Chains: again we
see that GMC gets to the (assumed) high density region much faster than MH
(see e.g. components 12 or 19) and that the samples obtained with GMC are
much less correlated.

Figure 7.3: Convergence from a random starting point of Metropolis Hastings
and Geodesic Monte Carlo for D = 3. We notice in particular that
GMC reaches the high density region much faster than MH.

7.3 Gibbs sampler

Due to the increased complexity that one has to face when using a Bayesian
approach it is common practice to initialize the variables that are being updated
in the Gibbs sampler to their MAP solution (Salakhutdinov and Mnih, 2008b).
In our case however a MAP approach for the constrained problem is still not
available, but we have found out that using a modi�cation of the MAP solution
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Figure 7.4: Convergence from a random starting point of MH and GMC for
D = 20. In few iterations GMC reaches the high density region.

for the unconstrained problem gives good results. The Gibbs sampler used is
then as follows:

Gibbs sampling for Constrained BPMF

1. Initialize the model parameters using the MAP solutions for for U
and V

• the starting point for the user matrix is the MAP solution, i.e.
U(0) = UMAP .

• qv̄MAP
j is used as starting mean direction in the vMF proposal

distribution of the MH algorithm.

2. For t = 1, . . . T

(a) Sample the user hyperparameters (Gaussian-Wishart distribu-
tion)

(b) Sample the movie vectors in parallel (MH or GMC)

(c) Sample the user vectors in parallel
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As one can see from the algorithm, �rst we sample from the movie vectors and
then from the user vectors, whereas it is usually done the other way round
(Salakhutdinov and Mnih, 2008b; Zhou et al., 2008; Pilászy et al., 2010). The
reason why in our case it is better to swap the order of these steps is that if we
had to sample U �rst we would have to manually normalize the MAP movie
vectors to have �xed norm, and this could potentially lead to a really bad sample
from U. On the other hand, if we sample V �rst the normalized MAP movie
vectors are just the starting point for the MH sampler, and after the burn-in
samples we will hopefully end up in a much better solution.
Note also that as we are not starting from the MAP solution for the constrained
problem, it may be convenient to introduce some burn-in in the Gibbs Sampler
as well (for the results presented next 3 samples were used).

7.4 Results

Figure 7.5 shows the distribution of the norms of the movie vectors vj for the
unconstrained MAP solution of the Net�ix data set in the case D = 50. As we
can see, the �xed norm constraint we are imposing is quite strong (very far from
the MAP solution). The main purpose of this section is therefore to understand
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Figure 7.5: Histogram of the norms of the movie vectors for the MAP solution
abtained with ALS. The median value is 1.579.

how this a�ects the recommendations. We want in fact not only to speedup
the retrieval process but also to keep providing high quality recommendations
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to the users. We will therefore now compare in terms of RMSE the proposed
constrained algorithm with GMC (BPMF-vMF) to the unconstrained MAP so-
lution obtained with Alternating Least Squares (PMF) and to the Bayesian so-
lution obtained using the Bayesian Probabilistic Matrix Factorization (BPMF -
this comparison is the most important as our approach is very similar). In the
Bayesian approaches (BPMF and BPMF-vMF) 151 samples where drawn (MAP
solution and 150 new other samples). The hyperparameters for the Geodesic
Monte Carlo where optimized using cross-validation on the quiz set.
Due to the big number of parameters in the model with respect to the training
data the convergence of the algorithm is quite fast, as one can see from Figure
7.6. We also notice that thanks to the Bayesian approach the model does not
over�t the data.
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Figure 7.6: Convergence of BPMF and BPMF-vMF (D = 20).

The �nal Test RMSE for di�erent numbers of latent features can be found in
Table 5.1 (for now in none of the models the biases are considered).

Test set
D PMF BPMF BPMF-vMF
8 0.9333 0.9198 0.9210
20 0.9275 0.9070 0.9077
50 0.9182 0.8992 0.8994
100 0.9143 0.8955 0.8966

Table 7.1: Test RMSE for di�erent values of D.
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We see that the results obtained with BPMF-vMF are extremely close to the
ones obtained with BPMF, especially despite the strong constraints for the
17770 movie vectors. It is however important to check which kind of errors we
are doing: a risk that has to be avoided when constraining all the movie vectors
to have the same norm is that we loose predictive power only for a speci�c
type of users or movies (e.g. only users with few ratings or movies with few
viewers). We test this in the following sections, �rst for groups of users with
similar number of ratings and then groups of movies watched a similar number
of times.

7.4.1 RMSE for di�erent groups of users

We use the approach of section 5.4, where the users are grouped according to
their number of ratings in the training data and it is computed a separate RMSE
for each of these 9 groups.
For D = 50, the Test RMSE for the di�erent groups of users and with the
di�erent algorithms is shown in Figure 7.7. We see that the blue line relative to
the BPMF-vMF is almost indistinguishable from the black one relative to BPMF
(it is always slightly above), meaning that there is not a particular group of users
signi�cantly penalized when constraining the movie vectors. As if we changed
the value of D we would get a very similar plot, only the case D = 50 is shown.

7.4.2 RMSE for di�erent groups of movies

As we are imposing constraints on the movie vectors, the analysis in this case
will be more interesting and detailed than in the previous one (in which similar
users were grouped).
We see from Figure 7.8 that, in the unconstrained MAP solution, for rare movies
the mean norm of the corresponding vectors tends to be higher than for popu-
lar ones. This suggests that when imposing a �xed norm it is likely that some
groups of movies will be more penalized than other ones.
The RMSE for all the groups in the case K = 50 are shown in Figure 7.9: the
new constraints give some problems mostly for movies with a small number of
viewers. The results are still better than the unconstrained MAP solution ob-
tained with Alternating Least Squares, but now the di�erence between BPMF
and BPMF-vMF is evident from the plot for the �rst 5 groups.
At �rst sight, these results may seem inconsistent with the RMSEs shown in
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Figure 7.7: Test RMSE for the di�erent groups of users (D = 50). The blue
line (BPMF-vMF) and the black one (BPMF) are almost overlap-
ping.
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Figure 7.9: Test RMSE for the di�erent groups of movies (D = 50). In this
case we can clearly see the di�erence between the blue line (BPMF-
vMF) and the black one (BPMF).

Table 7.1, where for K = 50 we see that the test RMSE obtained with BPMF
is extremely close to the one obtained with BPMF-vMF. However, if we con-
sider the distribution of the observed ratings in the training data set among the
9 groups of Figure 7.10 (the test set was constructed with similar properties),
we see that only a very small fraction belongs to the groups in which the con-
strained algorithm has issues. Therefore, these will just slightly in�uence the
total RMSE.
It is however important to point out that in real large-scale recommender sys-
tems such as the one used at Microsoft for Xbox Live, movies with less than a
couple of hundreds of views are not even suggested, as they have not enough
views and the training data is not su�cient to be con�dent about the predictions
(Ulrich Paquet, personal communication, April 2014). This further shows that
the learned constrained vectors can represent the data very well (the RMSE
obtained is quite close to the one that BPMF gives).
Finally, considering the mean movie vectors' norm for each group shown in Fig-
ure 7.8, it can be interesting to see how changing the value q of the �xed norm
a�ects the performances in the groups consisting of rarer movies. From Fig-
ure 7.11 we see that if q is either too small or too big the RMSEs tend to be
worse. For popular movies the results do not di�er that much, unless q is either
too small or too big. For rarer movies instead, the variability is much bigger:
as we can see from the quite di�erent results that were obtained running two
di�erent times the simulation with q = median(||vj ||) = 1.5796 and the exact
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Figure 7.10: Number of ratings in each group of movies. The majority of the
movies have a high number of ratings.

same parameters, this di�erence is mainly due to the intrinsic randomness of the
sampling procedure and the small number of ratings available. We can therefore
claim that any value of q close enough to the mean values in Figure 7.8 will give
similar performances.
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7.4.3 Choice of the sampling method

In section 7.2 were presented two methods to sample from the posterior distri-
bution over the movie vectors: Metropolis-Hastings (MH) and Geodesic Monte
Carlo (GMC). We now want to compare their performances in terms both of
RMSE and speed.
The quiz set was used to tune the main parameters of the two algorithms in
the case D = 20. To see how robust the methods are with respect to these
parameters, their values were kept �xed for the other dimensions as well.

• For MH, the concentration parameter was taken κ = 20000, and 200 burn-
in samples were needed at each iteration to get a good mixing of the chain.

• For GMC the step size we used is ε = 0.002 and the number of "leapfrog"
steps was L = 10. Due to the better proposal distributions derived from
the Hamiltonian approach just 10 burn-in samples are necessary.

In terms of RMSE wee see that the two methods give similar results (Table 7.2),
and this is mainly due to the careful tuning procedure. The Geodesic Monte
Carlo seems to give some advantages in higher dimensions. We also note that,
despite the parameters were tuned for the case D = 20 they work well for the
other dimensions as well.

Test set
D BPMF BPMF-vMF, GMC BPMF-vMF, MH
8 0.9198 0.9210 0.9207
20 0.9070 0.9077 0.9077
50 0.8992 0.8994 0.8999
100 0.8955 0.8966 0.8979

Table 7.2: Test RMSE for di�erent values of D using MH and GMC.

More interestingly, if we consider the sampling of the movie vectors, a one or-
der of magnitude speedup is obtained using GMC: it is in fact around 10 times
faster than MH (see section 7.4.4 for more details). This is due to the fact that
the proposal distributions used in the Hamiltonian approach allow bigger steps
accepted with high probability and therefore a much faster exploration of the
space.
To provide more insights on why the starting guess proposed is good enough
we can also check which RMSE the modi�ed MAP solution would give, com-
puting the error obtained using the matrices U and the normalized version
of V. For K = 50 for example, this Test RMSE is 0.9246, that is of course
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much worse than the unconstrained MAP solution (RMSE of 0.9182) but that
is still acceptable. This also explains why it was chosen a value for the norm of
q = median(||vMAP

j ||): analyzing the distribution of the norms in the uncon-
strained MAP solution in Figure 7.5, it is clear that to have the smallest error
in the �rst iteration we want to be as close as possible to the biggest number of
samples, hence the choice of the median.

7.4.4 Running times

As shown in section 7.3, the Gibbs sampler for the introduced model is highly
parallelizable. All the simulations presented before were done in the DTU high
performance computing cluster using Matlab's function parfor to run the up-
dates in parallel with 8 di�erent local workers.
Table 7.3 shows the number of seconds necessary to perform a single parallelized
Gibbs sampling iteration for di�erent values of D and for BPMF, BPMF-vMF
with GMC updates and �nally BPMF-vMF with MH updates. As we are mostly
interested in analyzing the loss in performance when imposing the �xed norm
constraints, the number of seconds only for the updates of all the movie vectors
(V step) is also listed in brackets. We note that while the training time per
sample using GMC is comparable to the one for the classical BPMF introduced
in section 5.3, MH is extremely slow: the update of the V matrix takes in fact
around 10 times more than with GMC.

Seconds per sample
D BPMF BPMF-vMF (GMC) BPMF-vMF (MH)
8 22 (6) 33 (17) 236 (220)
20 31 (11) 45 (25) 296 (276)
50 62 (26) 91 (55) 552 (516)
100 137 (60) 205 (128) 1034 (957)

Table 7.3: Running times for a Gibbs sampling iteration, in brackets it is in-
dicated the time to update all the movie vectors.

A visual comparison of the training time for the case D = 20 is shown in Figure
7.12.
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Figure 7.12: Comparison of the overall time taken to get 150 samples with
BPMF, BPMF-vMF with MH, BPMF-vMF with GMC.

7.5 Modelling Biases

As explained in section 6.4, the inclusion of biases in the constrained model
carries some complications if the �nal aim is to speedup the recommendation
step. We will now show just the results obtained with the second approach
introduced in section 6.4, leaving the other more complex option as a topic for
future research.
Using this approach the biases are considered in the model in the exact same
way as in section 5.3.2. The graphical model in this case is shown in Figure
7.13. From Table 7.13 we see that for the constrained model the biases allow a
better modelling of the data especially for lower dimensions, while if the number
of latent features is high enough there is no need to consider them.

RMSE for the test set
D BPMF BPMF bias BPMF-vMF BPMF-vMF bias
8 0.9198 0.9173 0.9210 0.9205
20 0.9070 0.9065 0.9077 0.9070
50 0.8992 0.8994 0.8994 0.8995
100 0.8955 0.8957 0.8966 0.8967

Table 7.4: Comparison of the test RMSE for di�erent values of D with and
without biases in the model.
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Chapter 8

Data Structures for

E�cient Retrieval

8.1 Approximate Nearest Neighbors

Nearest neighbors search has become fundamental in a wide range of applica-
tions. In instance-based learning for example (Witten et al., 2011), a new test
object is classi�ed according to the class of the nearest neighbor in the training
set. Also, for image matching or object recognition, this operation is crucial
when using high dimensional features, e.g. SIFT features (Lowe, 2004), that
have to be matched to their closest instance in the training data.
The simplest way to �nd the nearest neighbor of an object is to compute its
distance to each training object, an operation whose complexity is linear in
the number of training examples. When dealing with very complex problems
however, having huge training data sets is often the only way to get accurate
performance: the linear scaling of the nearest neighbor search is therefore a
serious bottleneck. To overcome this issue, several data structures have been
developed to speedup the retrieval phase (Samet, 2005). The main idea behind
these structures is that of organizing o�ine the training data in a smart way,
in such a way that with few operations we can rapidly discard whole regions
containing points that are far from our test instance. The disadvantage of this
approach is that the construction of these data structure is often a computa-
tionally expensive operation and they may need a lot of hard-disk space; this
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is however not an issue in most of the applications, as often the training data
set can be pre-processed and the data structures built only once and stored for
future usage.
It should be now clear how we can speedup the prediction step in our recom-
mender system application. We have seen in fact in section 6.2 that setting a
constraint on the norm of the movie vectors we can transform the needed max-
imization over scalar products in a nearest neighbor search. We can therefore
construct for the movie vectors of a posterior sample one of the available data
structures for e�cient retrieval, and recommend a new movie to user i looking
e�ciently for the nearest neighbor to ui. The information of several posterior
sample has then to be combined to improve the quality of the recommenda-
tions.
The feature vectors in our recommender system application have to be high
dimensional (e.g. D higher than 10) to model the data accurately. The perfor-
mance of the above mentioned data structure however rapidly decreases when
using high-dimensional data (Muja and Lowe, 2009): in this case there is often
no known nearest-neighbor search algorithm that is exact and has acceptable
performance. We can however deal with this problem thanks to a property of
recommender systems: a recommendation can be considered valid as long as its
predicted rating is close to the optimal one. In other words, it does not make
much di�erence if we suggest an item with predicted rating 4.89/5 stars instead
of the optimal one with 4.91/5. On the contrary, this can be considered as a
positive aspect, as in this way we are able to enhance the engagement of the
user by recommending di�erent but good items every time. From a "distance
minimization" point of view, this approach is equivalent to relaxing the require-
ment of �nding the exact nearest neighbor, as long as the returned item is very
close to it.
Thanks to this reasonable assumption we are now able to exploit a great deal
of literature on Approximate Nearest Neighbor (ANN) search, that is still an
important research topic in the computer vision community (Muja and Lowe,
2014). In object recognition for example, an object is represented using high-
dimensional feature vectors and a match to the corresponding object in the
training set is found by looking for the closest feature vectors in the training
set. Due to the usual symmetries in real world objects and the usage of scale
and rotation invariant features (e.g. SIFT features) the used algorithms perform
equally well if a close approximation to the nearest neighbor is found. Muja and
Lowe (2009) show that for the big and high-dimensional data sets typical in the
computer vision community if one is willing to accept an approximate nearest
neighbor algorithm with 95% of correct matches it is possible to be even two
or more orders of magnitude faster than linear search. The speedup however
depends on the particular application and the data structure used, therefore
a detailed analysis is required before using this approach in our recommender
system.
The most widely used approximate nearest neighbor search methods can be
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classi�ed in two main categories (Muja and Lowe, 2014):

1. Partitioning trees provide a hierarchical decomposition of the search
space, that allows to rapidly focus the search on the region that is likely
to contain the nearest neighbor.

2. Hashing techniques are based on the constructions of hash functions
that have the property that elements that are close in space will likely
have close hashes as well, see for example (Andoni and Indyk, 2008).

In this thesis we will focus on two data structures belonging to the �rst category,
especially due to the better results they have shown to give in many di�erent
applications (Muja and Lowe, 2014).

8.2 k-d trees

The k-d tree, originally introduced in its basic version in (Friedman et al., 1977),
is a tree built by partitioning the k-dimensional data recursively along the di-
mension of maximum variance.
At the root of the tree the data is split with an hyperplane orthogonal to the
dimension of maximum variance, that divides the space into two halves using
as a threshold the median value of the data along that dimension. The root
node will then have to store the dimension i of the split and its median value m.
Each of the two halves of the data is then recursively split in the same way, with
the leaves of the tree that form a complete partition of the data space, dividing
it in hyper-rectangular bins (depending on the implementation each bin may
contain one or more points of the data set). This procedure will produce a well
balanced binary tree of height log2M , with M being the number of points in
the data set.
Given a query point q?, the constructed tree is descended using log2M com-
parisons to arrive to the bin/hyper-rectangle the point belongs to. With high
probability the nearest neighbor will be in the bin where the query falls or in
one of the adjacent ones. To look for the exact nearest neighbor of q? there are
then two main techniques:

1. Depth-�rst order: the search continues examining the surrounding bins
according to the tree structure, starting therefore from the sibling of the
current node. It is possible to save lots of comparisons pruning whole
branches of the tree if the region of space they represent is further from
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the query point than the distance to the current hypothesis for the nearest
neighbor.

2. Best-bin-�rst: this method allows faster retrieval than the one obtained
with the depth-�rst approach by taking into account the position of the
query point rather than the structure of the tree, that depends only on
the stored points (Beis and Lowe, 1997; Arya and Mount, 1993). While
we descend the tree looking for the bin q? belongs to, when a decision
is made at an internal node to branch in one direction an entry is added
to a priority queue that stores information about the option not taken,
namely the position on the tree and the distance of the query point from
the node along the corresponding dimension. After the descent of the
tree is completed the search will start again from the closest node in the
priority queue, that will be continuously updated with the information of
the new nodes visited. As before, it is possible to speedup the retrieval
by not visiting whole branches of the trees that represent points that are
more distant than the current guess for the nearest neighbor.

Example
Let us consider the 2-dimensional nearest neighbor search problem in
Figure 8.1. Using only the information on the data set (red dots) we
�rst partition the space using a k-d tree: as the dimension of high-
est variance considering the whole data set is the horizontal one, we
split the space vertically using as a threshold the median value of
all the points along the horizontal dimension (black line). We then
recursively split the 2 halves found along their dimension of highest
variance to obtain �rst the green hyerplanes, and then the orange
ones.
Given a query point we then descend the tree to get to the corre-
sponding bin (a rectangle in this case) and compute the distance to
the data set point stored in it, that will be the �rst guess for the near-
est neighbor. All the bins that are not intersected by the "remaining
search hypershpere" will not contain any point closer to the query
point than the current guess, and can therefore be neglected in the
search, with clear computational savings. The search has now to be
continued analyzing adjacent bins: with the depth-�rst approach we
would �rst analyze the sibling of the current node, i.e. the top-left
rectangle, whereas using the best-bin-�rst method we �rst analyze
the bin formed by the horizontal green line, taking therefore into
account that the query point is very close to its border.

The computational analysis of the k-d tree search is tricky and general results
are not possible as the e�ciency of the algorithm highly depends on the consid-
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Figure 8.1: A 2-dimensional kd-tree. See the example for a detailed descrip-
tion of the �gure.

ered data set (e.g. if the data is highly correlated or not). A lower bound for
this operation is however O(log2M), as we need at least to descend the whole
tree, that has height log2M . While this can be achieved in low-dimensional
problems, this rarely happens in high dimensions, as due to the curse of dimen-
sionality for an exact search we need to visit many more branches (there are
many more bins adjacent to the central one). For the most di�cult data sets it
may even be possible to reach O(M) complexity, therefore with a small or no
improvement with respect to a linear scan of the data set.
If the problem in hand allows the acceptance of approximate nearest neighbors,
we can however speedup the retrieval process by imposing a limit on the num-
ber NL of leaf nodes we are willing to examine. With this constraint, Muja
and Lowe (2009) show that it is possible to obtain even three order of magni-
tude speedups while keeping an extremely high accuracy, in the sense that the
method will return the nearest neighbor for a large fraction of the queries and a
very close neighbor otherwise (especially when using a best-bin-�rst approach).
It is �nally worth noting that with straightforward modi�cations of the intro-
duced algorithm we can also �nd the K nearest neighbor to the query point: we
just need to maintain the K current best guesses instead of just one and prune
a branch if we are sure that none of its points will be closer than one of the
current nearest neighbors.
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8.2.1 k-d forests

Silpa-Anan and Hartley (2008) proposed a method to further improve the per-
formance of the k-d tree when looking for nearest neighbors in high dimensions.
Instead of using just a single tree, they use multiple randomized k-d trees, also
known as k-d forests, that are searched in parallel. Each of the tree is con-
structed by splitting the data set at each iteration along one random dimension
among the top ND ones with highest variance (e.g. ND=5). With the best-bin-
�rst approach a single priority queue is maintained across all the randomized
trees: setting an upper bound on the number of allowed comparisons as ex-
plained above, on average each randomized tree will be then visited NL

ND
times.

We can improve the performances using multiple trees with di�erent structures
as we increase the probability of having the query point and its nearest neighbor
in the same cell, or at least in a very close one. Also, in high dimensions it turns
out that many of them have a similar variance, hence there is little or even no
loss choosing a random dimension among the top ones instead of the optimal
one.

8.3 Priority search k-means trees

Instead of decomposing the space using hyper-planes along one of the coordi-
nates as done by k-d trees, the priority search k-means tree (Muja and Lowe,
2009) decomposes it using hierarchically the clustering algorithm known as k-
means (Bishop, 2006). It therefore has the advantage of exploiting the natural
structure of the data in the construction phase, as to cluster the points it is
computed the distance across all dimensions, and not only across one of them
as the k-d tree does.
Each level of the tree is constructed by dividing the data points in k groups
using the k-means algorithm. Each group is then recursively partitioned in the
same way until the number of points is smaller than k. An example of tree with
k = 2 is shown in Figure 8.2.
To search for the nearest neighbor of a query point, the tree is descended fol-
lowing the branch with the closer cluster center to the query point. Once a leaf
node is reached, the search then continues as for the k-d trees in a best-bin-�rst
manner. Muja and Lowe (2009) show that the priority search k-means tree
can outperform k-d trees for some data sets, while for others k-d trees are still
better.
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Figure 8.2: A 2-dimensional priority search k-means trees. On the top �g-
ure we see how the points are clustered, while the bottom one
represents the constructed data structure.

8.4 Approximate Nearest Neighbors for recom-

mender systems

We will now see if the introduced data structures for approximate nearest neigh-
bors (ANN) search can be exploited to speedup the recommendation step and
still provide high-quality results.
We assume that the model is properly trained with the learning procedure in-
troduced in Chapter 7, and we focus for now on a single posterior sample. If we
could do an exact nearest nearest neighbor search with one of the data structures
introduced above, than we would be sure about the quality of the recommen-
dations, as they would be the same obtained by maximizing the scalar product
(6.1). Due to the high dimensionality of the problem, however, we can only
get faster recommendations by introducing some approximations in the nearest
neighbor search. We need to be very careful with the results, as we want the
�nal suggestion to the user to be good enough.
To be useful in real world applications, the introduced approximate procedure
should return suggestions as similar as possible to the ones obtained by max-
imizing in an exact way the scalar product (6.1). In Figure 8.3 we show an
example of recommendations returned to a random user by the approximate
method for the Net�ix data set: in particular, it is shown whether the top 60
movies returned by maximizing the scalar product were found or not by the
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Top movies found with the approximate search (k=30)
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51 52 53 54 55 56 57 58 59 60

 

 

Not found

Found

Figure 8.3: Example of approximate recommendation that could be returned
by the proposed algorithm.

approximate search. Let us de�ne some quantities that will help us to analyze
the quality of the recommendations returned by the proposed method. We as-
sume that with our recommender system we want to show to the user a list
with the top k = 30 movies to the user. As we can see from Figure 8.3, due to
the approximations in the nearest neighbor search we will not be able to �nd
exactly the top 30. This is �ne, as long as the 30 movies suggested are good
enough: in this example we see that all the 30 movies suggested (the blue dots)
are among the top 60, hence very close to the optimal solution (especially if we
consider that the catalog of the data set contains 17770 movies).
We then de�ne for a single user the following quantities:

• The accuracy is calculated as

number of correct matches in the �rst k items

k
.

In other words, we want to see the ratio of the top k items that was found
by the approximate search. In the example in Figure 8.3, the accuracy is
17
30 = 0.5667.

• We are also interested in the position of the worst suggestion, as we
do not want the k items returned by the approximate search to be bad
recommendations. In the example the 30-th item suggested is in position
60.

• We de�ne the recommendations to user i as accepted if, given a thresh-
old Nth indicating high-quality recommendations, the worst suggestion is
below it. If for instance in the Ne�ix data set we decided that any of
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the �rst top Nth = 100 recommendations is good enough, than for the
example in Figure 8.3 the recommendations would be accepted. If on the
other hand we wanted Nth = 50, then the recommendations would not be
good enough.

• The speedup of the recommender system is de�ned as the ratio of the
time taken to make a recommendation by maximizing the scalar product
and the time taken with the approximate nearest neighbor approach.

We would then like our model to have high speedup, mean accuracy across
all users close to one and the position of the worst suggestion among all users
as close as possible to k. We �nally want a high acceptance rate for the
system, de�ned as the ratio of users whose recommendations are accepted. Of
course all these quantities are strongly correlated among them: it should be
clear for example that if the worst suggestion among all users is very low, then
the acceptance rate of the system will be really high.

8.5 Results for a single posterior sample

We will now analyze the speedup and performance that one can obtain for the
Net�ix data set using the presented data structures for e�cient retrieval for a
single posterior sample (these results would be similar for the MAP solution of
the constrained problem).
In our Matlab implementation we used the data structures from the library
FLANN - Fast Library for Approximate Nearest Neighbors (Muja and Lowe,
2009) - that implements e�ciently the algorithms described previously in this
chapter (using mex functions in Matlab to run C++ code). Given the data set,
in our case the movie vectors, with this library there are two main options to
construct the data structure:

1. The data structures and the parameters can be speci�ed manually:

• For the k-d forests the main parameters to set are the number of
trees to use and the allowed number NL of comparisons (that gives
the approximation). Of course, the bigger these numbers are, the
better will be the nearest neighbors found but the smaller will be
the speedup obtained. For our simulations we used 4 trees and tried
di�erent numbers of comparisons:
NL ∈ {1, 20, 200, 600, 1000, 1500, 2000, 3000, 5000}
• For the priority search k-means trees the main parameters to set are
the number K of clusters to use, the number of iterations for the
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k-means algorithm and again the maximum number of comparisons
NL. 64 clusters with the default value of 5 iterations and the same
NL as for the k-d forests were used in the simulations.

2. It is also possible to decide for an automatic selection of the optimal al-
gorithm (autotuning). In this case one has to specify a target mean ac-
curacy1 and a cross-validation technique is used to determine the optimal
data structure and the corresponding parameters. Of course, if one re-
quires a too big accuracy then the nearest neighbor search will be rather
slow. See (Muja and Lowe, 2009) for more details. We tried in the simu-
lations 10 di�erent values for the target accuracy, equally spaced between
0.1 and 1.

Figure 8.4 shows the results obtained in our simulations with D = 20 using the
methods and parameters speci�ed above, and comparing in various ways the
quantities de�ned in section 8.4. We are interested in giving to the user k = 10
suggestions, and we consider the recommendations as accepted if the worst one
among them is in the top Nth = 100. We see that for this data set the priority
search k-means trees outperform k-d forests, in the sense that they allow much
better nearest neighbors searches while still having a higher speedup. Also, we
notice that the autotuned data structures, despite being slower to create due
to the required cross-validation, are the best performing ones. In this case, for
very low target accuracies the method chooses k-d forests, while for the others
priority search k-means trees are always the best option.
The data structure that probably gives the best trade-o� between speedup and
quality of the recommendations is marked in Figure 8.4 with an asterisk. The
automatic tuning procedure has chosen a priority search k-means tree with
K = 32 clusters, 10 iterations for the k-means algorithm and NL = 168 max-
imum comparisons. From Figures 8.4a and 8.4b we see that it is possible to
achieve a 18.79x speedup with respect to the scalar product computation, while
keeping a mean accuracy of 0.549 and an acceptance rate of 0.997. Figure 8.4c
shows �nally that the worst of the 10 recommendation considering all the 480189
users of the Net�ix data set is in position 314 (recall that the Net�ix data set
has a catalog with 17770 movies). The presented results are very interesting:
the 0.997 acceptance rate means that just for 1413 users out of 480189 we have
given recommendations not in their top 100 suggestions. Also, as the mean
accuracy is 0.549 we know that on average 5.49 suggested movies are in the top
10. The remaining suggestions are very close to the top 10, and we have also
proven that the worst mistake the approximate search has done considering all
480189 is that for one of them the 10th movie suggested was in position 314
out of 17770. Figure 8.4d �nally shows that if we increase the number of latent

1The accuracy in this case is de�ned as shown in section 8.4 but with k = 1 �xed, i.e. only
the closest nearest neighbor is considered.
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features the achievable speedup decreases. This is not trivial, as (Muja and
Lowe, 2014) show that for some data sets the speedup is not a�ected by the
dimensonality of the vectors in hand.
Note in particular that the presented speedup of 18.79x is relative to the com-
putations of scalar products in equation (6.1). If we consider just the distance
minimization problem, then the speedup relative to the exact computation of
the distances (i.e. the exact nearest neighbor search) would be bigger, in this
case 20.19x.

8.6 Combining the information of several poste-

rior samples

As we have just seen, constructing a priority search k-means tree we can perform
a much faster but still high-quality recommendation step using a single posterior
sample. To fully exploit the power of the Bayesian approach, that is in this case
needed particularly to deal with rarer contents, we need however to combine
the information given by several posterior samples. This has furthermore to be
done in a very e�cient way to be able to use the introduced model in a real
large-scale system.
The simplest method one could think about to average between samples is to
construct a di�erent data structure for each of the samples, and combine the
top recommendations from each of them using a suitable voting scheme. Even
if this method could give good recommendations it would be rather ine�cient:
let us assume for example that we have to recommend just a single top item
to a given user. In this case, if we considered for each of the samples just the
best suggestion, then all of them could be di�erent, making the voting scheme
useless. Therefore, to provide just one good recommendation we would need to
look for the T > 1 best recommendations in each of the samples (e.g. T = 20), a
rather computationally expensive operation. A better approach that avoids the
construction of di�erent data structures for each samples is therefore needed.
From a Bayesian perspective, the best suggestion can be found maximizing
the expected rating: given S posterior samples U(s) and V(s) for U and V
respectively we can �nd the best suggestion ĵ as2

ĵ = arg max
j

1

S

S∑
s=1

(u
(s)
i

T
· v(s)

j ) , (8.1)

We can of course see this equation as a Bayesian extension of (6.1).
Similarly to what we did in section 6.2, we can rewrite the scalar product in

2This equation can be easily extended when considering biases in the model.
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Figure 8.4: Performance analysis for the approximate nearest neighbor step of
the recommender system (see the text for a detailed description
of the �gure).
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term of norms:
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Then, �xing again the norm of the movie vectors we have
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In this case we have therefore no longer a nearest neighbor search as we have to
minimize a sum of squared distances. However, if we de�ne
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we can rewrite the previous equation as
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· v(s)

j ) = arg min
j
||ũi − ṽj || .

We have therefore derived another distance minimization problem, with the
di�erence that in this case the vectors to be considered are derived by stacking
the posterior samples. To solve it we can use all the previously introduced data
structures, in this case however we will work in much higher dimension.

8.6.1 Results

Figure 8.5 shows the results for the nearest neighbor search when considering
more than one posterior sample. The data structure that gives the best com-
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promise between quality of the recommendations and speedup with 10 posterior
samples is shown with an asterisk. If we combine the information of the 10 pos-
terior samples, then we can obtain a 8.16x speedup with respect to the scalar
product computation3 while achieving a mean accuracy of 0.47 and an accep-
tance rate with Nth = 100 of 0.976 (Figures 8.5a and 8.5a). In other words,
apart from 11736 users out of 480189, the 10 recommendations found with the
approximate nearest neighbors search are in the top 100 and around 5 of them
are on average in the top 10. From Figure 8.5c we see that the worst error the
system does is to recommend for one user a movie in position 879 (out of 17770
movies). This is however just one of a small number of outliers, as from the
histogram of the position of the worst recommendations for each user in Figure
8.5d we see that it is almost always below 200. In Figure 8.5 we also show the
results combining 20 posterior samples: in this case the speedup that one can
achieve is lower, 4.15x, with a mean accuracy of 0.582, an acceptance rate of
0.999 and the worst suggestion in position 355.
It is �nally worth to point out that the Net�ix data set is a relatively small one
(despite being one of the biggest explicit feedback data set publicly available,
widely used in the recommender systems community), therefore as we have just
seen the speedups obtainable with it are still limited. Also, when the number of
items in the catalog is below, say, 50000, then it is still possible in real large scale
recommender system such as the one used by Microsoft for Xbox Live to perform
a linear search through all the items (Ulrich Paquet, personal communication,
June 2014). The model introduced in this thesis could be however fundamental
to improve the performances in other domains, such as phone apps and music
recommendations, where the number of items in the catalog could easily reach
hundreds of thousand and tens of millions respectively. The most important
results that we learned analyzing movies recommendation is that despite the
constrained model there is almost no loss in the quality of the recommenda-
tions. Therefore, it could in principle be used in real world applications where
a non-conventional approach is needed due to the big size of the catalog.

3The speedup with respect to the exact distance computation is 60x, bigger than in the
case of a single posterior sample due to the higher dimensionality of the problem.
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Figure 8.5: Performance analysis for the approximate nearest neighbor step of
the recommender system combining the information several poste-
rior samples (see the text for a detailed description of the �gure).
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Chapter 9

Conclusions and future work

In this thesis we proposed a novel approach to a problem of great importance in
real world recommender systems, namely a way to give optimal recommenda-
tions in large-scale systems containing a huge number of items in their catalogs.
For this purpose it was developed and analyzed a recommender system based
on matrix factorization techniques that, thanks to the �xed norm constraints
on the item vectors, allows faster but still high quality recommendations. As
shown, the methods used can be naturally incorporated in a Bayesian frame-
work, that is essential to deal with rarer contents and account for uncertainties
in the predictions.
The model was tested with the Net�ix data set, and the results in terms of
RMSE showed that the quality of the recommendations is only slightly a�ected
by the imposed constraints. More importantly, we showed that there is no cat-
egory of users or movies (obtained grouping them according to the number of
ratings they have) that is particularly penalized by this approach. Due to the
relatively small size of the data set the speedup obtained are promising but still
limited (4 times faster combining 20 posterior samples). Tests with some larger
data sets used in real world applications will likely give much bigger improve-
ments, possibly justifying the development of recommender systems based on
the proposed method. In this case the e�ciency of the training phase is equally
important, as the systems need to be re-trained even every day to take into
account the incoming new data. We showed however that the Geodesic Monte
Carlo algorithm allows a very e�cient training phase for the proposed model.
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It is �nally worth considering how some of the best performing ideas were ob-
tained combining the e�orts of di�erent research �elds: the training phase deeply
exploits research topics from physics (Hamiltonian mechanics), di�erential and
information geometry (Riemmanian manifolds), and machine learning (MCMC
methods). Also, the data structures for e�cient retrieval used in this work were
developed to solve nearest neighbor problems in the �eld of computer vision.
There is still a lot of research going on in these �elds to improve the algorithms
used, meaning that the recommender system developed could potentially bene�t
from a great deal of literature still to appear.

Considering the future work, it will be essential to try the power of the pro-
posed model with a big real world data set, both to test the performances from
a RMSE/speedup point of view and to see if the training phase is fast enough.
It will be then necessary to assess how the results change considering a varying
number of posterior samples, or using a variational approach to deal with the
Bayesian perspective. The model could be extended taking into account for
example hyper-priors for the von Mises-Fisher distributions on the item vectors
(as it is done for the user vectors with the Gaussian-Wishart hyperprior), bi-
ases, or using only implicit feedback for the construction of the utility matrix.
Finally, the results could be improved by merging the training procedure with
the construction of the data structure, creating therefore a system that is even
closer to "learning to index".
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