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Summary (English)

Over the last few decades an ever-increasing amount of data is being collected in a wide range of
applications. This has boosted the development of mathematical models that are able to analyze
it and discover its underlying structure, and use the extracted information to solve a multitude
of different tasks, such as for predictive modelling or pattern recognition. The available data is
however often complex and high-dimensional, making traditional data analysis methods ineffective
in many applications. In the recent years there has then been a big focus on the development
of more powerful models, that need to be general enough to be able to handle many diverse
applications and kinds of data.

Some of the most interesting advancements in this research direction have been recently obtained
combining ideas from probabilistic modelling and deep learning. Variational auto-encoders (VAEs),
that belong to the broader family of deep latent variable models, are powerful and scalable models
that can be used for unsupervised learning of complex high-dimensional data distributions. They
achieve this by parameterizing expressive probability distributions over the latent variables of
the model using deep neural networks. VAEs can be used in applications with static data, for
example as a generative model of images, but they are not suitable to model temporal data such
as the sequences of images that form a video. However, a major part of the data that is being
collected has a sequential nature, and finding powerful architectures that are able to model it is
therefore fundamental.

In the first part of the thesis we will introduce a broad class of deep latent variable models for
sequential data, that can be used for unsupervised learning of complex and high-dimensional
sequential data distributions. We obtain these models by extending VAEs to the temporal setting,
and further combining ideas from deep learning (e.g. deep and recurrent neural networks) and
probabilistic modelling (e.g. state-space models) to define generative models for the data that use
deep neural networks to parameterize very flexible probability distributions. This results in a
family of powerful architectures that can model a wide range of complex temporal data, and can
be trained in a scalable way using large unlabelled datasets.

In the second part of the thesis we will then present in detail three architectures belonging to this
family of models. First, we will introduce stochastic recurrent neural networks (Fraccaro et al.,
2016c), that combine the expressiveness of recurrent neural networks and the ability of state-space
models to model the uncertainty in the learned latent representation. We will then present
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Kalman variational auto-encoders (Fraccaro et al., 2017), that can learn from data disentangled
and more interpretable visual and dynamic representations. Finally, we will show that to deal
with temporal applications that require a high memory capacity we can combine deep latent
variable models with external memory architectures, as in the generative temporal model with
spatial memory of Fraccaro et al., (2018).



Resumé (Summary in Danish)

I løbet af de sidste par årtier er der samlet en stadig større mængde data i en bred vifte af
anvendelser. Dette har styrket udviklingen af matematiske modeller, der kan analysere og opdage
den underliggende struktur i data, og bruge den uddragne information til at løse en lang række
forskellige opgaver, f.eks. til prediktiv modellering eller mønstergenkendelse. De tilgængelige data
er imidlertid ofte komplekse og høj dimensionelle, hvilket ofte gør traditionelle dataanalysemetoder
ineffektive. I de senere år har der været et stort fokus på udviklingen af mere kraftfulde modeller,
der skal være generelle nok til at kunne håndtere mange forskellige typer anvendelser og data.

Nogle af de mest interessante fremskridt i denne forskningsretning er for nylig blevet opnået ved at
kombinere ideer fra probabilistisk modellering og dyb læring. Variational auto-encoders (VAE’er),
der tilhører den bredere familie af dybe latente variabel modeller, er fleksible og skalerbare
modeller, som kan bruges til uovervåget (eng unsupervised) læring af komplekse høj dimensionelle
datafordelinger. De opnår dette ved at parameterisere ekspressive sandsynlighedsfordelinger over
de latente variabler ved hjælp af dybe neurale netværk. VAE’er kan bruges i applikationer med
statiske data, for eksempel som en generativ model af billeder, men de er ikke egnede til at
modellere tidsmæssige data, såsom sekvenserne af billeder (video). En stor del af de data, der
indsamles, har imidlertid en sekventiel karakter, og det er derfor en fundamental udfordring at
finde ekspressive arkitekturer, der kan modellere det.

I den første del af afhandlingen introducerer vi en bred klasse af dyb latent variabel modeller
til sekventielle data, der kan bruges til uovervåget læring af komplekse og høj dimensionelle
sekventielle datafordelinger. Vi kommer frem til disse modeller ved at udvide VAE’erne til det
tidslige domæne og yderligere kombinere ideer fra dyb læring f.eks. dybe og rekursive neurale
netværk (eng recurrent neural networks) og probabilistisk modellering f.eks. state-space-modeller.
Dette resulterer i en familie af arkitekturer, som kan bruges til at modellere en bred vifte af
komplekse tidsmæssige data og kan trænes på en skalerbar måde ved hjælp af store datasæt.

I anden del af afhandlingen vil vi så detaljeret præsentere tre arkitekturer af ovennævnte type.
For det første vil vi introducere stochastic recurrent neural networks (Fraccaro et al., 2016c),
der kombinerer ekspressiviteten af rekursive neurale netværk og state-space-modellers evne til at
modellere usikkerheden i den lærte latente repræsentation. Vi vil derefter præsentere Kalman
variational auto-encoders (Fraccaro et al., 2017), der kan lære afkoblede og mere fortolkelige
visuelle og dynamiske data repræsentationer. Endelig vil vi vise at for at håndtere anvendelser på
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temporal data, der kræver en høj hukommelseskapacitet, kan vi kombinere dyb latente variabel
modeller med eksterne hukommelsesarkitekturer, som i generative temporal model with spatial
memory af Fraccaro et al., (2018).
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Chapter 1

Introduction

1.1 Motivation

The majority of the successful practical applications of machine learning use supervised learning
methods, that learn a mapping from an input to an output variable using a dataset containing
labelled data. We may want for example to learn a classification model that receives an image of
an object as input, and outputs a label describing the type of object in the image. For training
this model we require a labelled dataset that contains a set of image-label pairs from which
the model can learn to distinguish the different objects. However, labelled data is scarce and
expensive to obtain, in contrast to the vast amount of unlabelled data collected daily in the Web
and in the smart devices connected to the Internet of Things (IoT).

A major focus in recent machine learning research is therefore the development of unsupervised
learning methods, that use the available unlabelled data. In unsupervised learning, the interest is
in learning models that can describe the underlying structure of the data, e.g. interesting patterns,
clusters, statistical correlations or causal structures. We can use it for example to uncover the
hidden structures in a collection of images, learn how to predict some of the pixels of an image
given the rest of them (e.g. to deal with occlusions) or generate new images from the same data
distribution.

An unsupervised model that explains the data well, can also be used for semi-supervised learning,
in which we want to solve a supervised task given a small labelled dataset and a big unlabelled
one. This is particularly relevant for applications in which obtaining a labelled dataset is difficult
or expensive but there is a large availability of unlabelled data. Semi-supervised learning methods
use the unlabelled data to learn a latent representation of the inputs that makes the supervised
task simpler, and typically achieve better performances than the ones obtained with a model
solely trained on the small labelled dataset.

Unsupervised learning is therefore relevant and applicable in many contexts and, since it does
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not require labelled data, training can be performed using very large datasets. It is generally
much harder than supervised learning, as instead of predicting a single label given the input,
unsupervised methods have learn to describe the structure of the input itself. In the last few
years there have been major advancements in unsupervised learning of complex high-dimensional
data distributions such as images, most of which build on the seminal works on variational auto-
encoders (VAEs) (Kingma and Welling, 2014; Rezende et al., 2014) and generative adversarial
networks (GANs) (Goodfellow et al., 2014). Broadly speaking, these models combine ideas from
deep learning and probabilistic modelling, by defining generative models for the data that use
deep neural networks to parameterize very expressive probability distributions. This results in
complex but flexible models containing hundreds of thousands of parameters, that are trained in a
scalable way using large datasets of unlabelled data and exploiting the computational capabilities
of graphics processing units (GPUs).

Most of the focus in recent unsupervised learning research has been on static data, i.e. fixed data
with no sequential nature such as images. A big part of the available unlabelled data is sequential:
we may be interested for example in modelling videos (a sequence of images), speech, music,
text, visits in electronic health records, the evolution of financial markets, user-click behaviors
or sensor data, all of which have an inherent temporal component. State-of-the-art models for
unsupervised learning of high-dimensional distributions such as VAEs are however difficult to use
in the sequential setting, as they cannot properly model temporal correlations in the data.

The aim of this thesis is to introduce a general class of sequential models for unsupervised learning
that can be used to model a wide range of complex temporal data and can be trained in a scalable
way using large unlabelled datasets. We combine deep learning architectures with probabilistic
models for sequential data that use deep neural networks to parameterize their distributions,
therefore obtaining flexible models inspired by VAEs. This will be discussed more in detail in
Section 1.2. These models can be used for a broad range of tasks such as for generative modelling,
representation learning, predictive modelling, compression, probabilistic reasoning or planning in
model-based reinforcement learning.

The primary target audience of this thesis is practitioners who are interested in flexible models
for unsupervised learning of high-dimensional sequential data distributions. We assume some
experience in basic probability theory and deep learning.

1.2 Outline and contributions

Despite its importance, the progress on unsupervised learning in the sequential setting has been
slower than the one for the static case. One of the main challenges when learning such methods
for sequential data is that the ideas they build on were developed in many different scientific
areas such as control theory, aerospace engineering, econometrics, statistics and machine learning
(both in probabilistic modelling and deep learning), each of which uses different terminologies and
notations. In the first half of this thesis (Chapters 2 to 4) we then present a unified treatment
of these topics from a machine learning perspective, hoping to help the reader understand the
“big picture” of how all these seemingly disparate ideas and models are connected. We also
introduce simple examples and intuitions that can be helpful to grasp the rationale behind more
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complex methods1. The second half of the thesis (Chapters 5 to 7) contains three publications
that present some of the novel models for unsupervised learning for high dimensional temporal
data distributions, briefly discussed in Chapter 4, in greater detail.

Chapter 2 introduces latent variable models (LVMs), the building blocks of all the models
presented in the rest of the thesis, and shows how they can be used for unsupervised learning
in the static setting. LVMs are probabilistic models that use a latent variable to model the
generative process from which the data was created and capture its hidden structure. We show
that in many cases the integrals needed during posterior inference and parameter learning are not
analytically tractable, but can be approximated using Variational inference. We then introduce a
flexible and scalable architecture, called variational auto-encoder, that can model a wide range of
data distributions by using the function approximation capabilities of deep neural networks to
parameterize the probability distributions that define it. Thanks to the deep neural networks,
this model can learn to automatically extract useful features in a hierarchical way.

Chapter 3 presents state-space models (SSM) as sequential extensions to LVMs, that provide
a general framework for sequential data modelling. We show that depending on our modelling
assumptions we can define different classes of SSMs. The linear Gaussian state-space model
is a basic architecture that makes strong assumptions on the generative process of the data,
but for which posterior inference is analytically tractable. It is also possible to define more
expressive non-linear and non-Gaussian architectures, for which however we will need to perform
approximate posterior inference building on the techniques discussed in Chapter 2 for the static
setting.

Chapter 4 shows that we can combine the ideas presented in Chapters 2 and Chapter 3 to define
a general family of methods for large-scale unsupervised learning of complex high-dimensional
data distributions in the sequential setting. We build a wide variety of models merging ideas from
deep learning (e.g. recurrent neural networks and external memories) and probabilistic modelling
(e.g. state-space models and variational auto-encoders). These models can be trained in a scalable
way using amortized inference ideas from VAEs, with black-box methods that allow us to focus
more on the modelling side than on the inference one. However, we also show that inference can
be further improved by tailoring the posterior approximation to the specific model. This chapter
contains the most novel component of the unified treatment presented in the first half of the
thesis, as we illustrate the strong connections between many of the models presented in the recent
literature as well as between the approximate inference techniques used for training.

Chapter 5 contains the paper (Fraccaro et al., 2016c), that introduces stochastic recurrent
neural networks (SRNN). For some sequential datasets recurrent neural networks (RNNs) are not
enough, as they cannot model the stochasticity in the latent representation. We then define a
model that combines the ability of RNNs to capture long-term dependencies in the data and the
ability of state-space models to model the uncertainty in the stochastic latent states. We use
flexible state-space models parameterized by deep networks, that can be trained extending ideas
from variational autoencoders to the temporal setting as shown in Chapter 4.

Chapter 6 contains the paper (Fraccaro et al., 2017), that introduces Kalman variational
auto-encodes (KVAE). Most of the models presented in this thesis are expressive but black-box

1In other words, I have collected in this thesis all the knowledge I wish I had before starting to work on these
topics.
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architectures, therefore their results are difficult to interpret. In this paper we show that by
carefully designing the model including some domain knowledge in a structured prior distribution
we can learn disentangled visual and dynamic representations, that make the model more
interpretable and computationally efficient when making predictions for future time steps. The
backbone of the KVAE is given by a linear Gaussian state-space model, and we can therefore
exploit its exact inference procedures and missing data imputations capabilities.

Chapter 7 contains the paper (Fraccaro et al., 2018), that introduces generative temporal
models with spatial memory (GTM-SM). In some applications that require a big memory capacity
recurrent neural networks are not powerful enough to memorize all the needed information. This
is the case for example when modelling agents walking in an environment that need to remember
what they have seen in the past. In this paper we show that this task can be solved by combining
a structured prior similar to the one presented in Chapter 6 with a non-parametric differentiable
external memory architecture.

Chapter 8 finally summarizes the main contributions of this thesis, discusses open questions
and some directions for future work.



Chapter 2

Latent Variable Models

2.1 Latent variable models

One of the central problems in machine learning is that of unsupervised learning of complicated
probability distributions p(x) given a finite sample of possibly high-dimensional data points x
drawn from that distribution. For example, consider the task of learning a probability distribution
over images of houses. To be able to do this, we need to define a distribution that can model the
complex correlations between the hundreds of thousands of pixels that form each image, that are
due to the recurring textures and patterns in the image. For example, neighboring pixels will
likely have similar colors and there will be multiple windows of the same type. To build such
distributions p(x) that are both flexible and scalable enough, several methods cast the image
modelling problem to a sequential one, defining an ordering for the pixels in the image and
learning to to predict the next pixel given all the previous ones (Larochelle and Murray, 2011;
Van Den Oord et al., 2016). However, due to the high number of pixels in a sequence, capturing
the correlations between distant pixels in the image is challenging.

Rather than modelling the distribution p(x) directly, we can introduce an unobserved latent
variable z and define a conditional distribution p(x|z) for the data, also known as likelihood. In
the following, we assume that z is a continuous random variable, but many of the ideas described
below also apply to the discrete case. Each of the elements of the observed variable x will depend
on the latent variable z, that can therefore be used to express the correlations in the observed
variable x. When modelling images of houses, z could for example contain a latent representation
of the type of house in the image, its architectural style, the color of the walls and so on. We
introduce a prior distribution p(z) over the latent variables, and compute the joint distribution
over observed and latent variables as

p(x, z) = p(x|z)p(z) . (2.1)

The introduction of the latent variable in the model allows us to express the complex marginal
distribution p(x) in terms of a more tractable joint distribution, whose components p(x|z) and
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p(z) are typically much simpler to define, for example by using exponential family distributions.
Given the joint distribution we obtain the desired data distribution p(x) by marginalizing over
the latent variables:

p(x) =

∫
p(x, z)dz =

∫
p(x|z)p(z)dz . (2.2)

Using Bayes’ rule we can then compute the posterior distribution p(z|x) as

p(z|x) =
p(x|z)p(z)

p(x)
, (2.3)

which allows us to infer the latent variable given the observation.

Models with latent variables can be interpreted as expressing the generative process from which
the data was created: to generate a new data point we first get a sample z(s) from p(z), and we
then use it to sample a new observation x(s) from the conditional distribution p(x|z(s)). Samples
obtained in this way can also be used to asses whether the model provides a good approximation
to the data distribution. In our example, z can be interpreted as containing a latent representation
of the architectural choices that where taken when designing the house, that condition the house
that is actually built, i.e. the observation x.

The specific relationship between the latent variable z and the observation x depends on the
form of the distributions in (2.1). Often we assume that the likelihood p(x|z) and the prior p(z)
belong to parametric families of distributions. To make this explicit in the notation, we can write
the joint distribution as

pθ(x, z) = pθ(x|z)pθ(z) , (2.4)

where θ denotes the unknown parameters of the model, that can be learned from data as discussed
in detail in Section 2.3.

Using latent variables that have a much lower dimensionality than the observed vectors we
can obtain a compressed representation of the data. In this case in fact, the latent variables
act as as a bottleneck through which all the information needed to generate the observations
has to pass. This is justified by the fact that in many data sets the data lies in a manifold
whose dimensionality is much smaller than the one of the original data space. Latent variable
models can be used as black-box density models, but we can also include some prior knowledge
on the generative mechanism that created the data in the distributions that define the joint
p(x, z) e.g. using probabilistic graphical models. We will return to this point in Section 3.1 when
discussing state-space models.

Mathematical models containing latent variables are defined as latent variable models (LVMs).
Among this class of methods we find linear Gaussian models such as factor analysis, principal
component analysis and mixture of Gaussians, as presented in the seminal paper by Roweis and
Ghahramani, (1999). These models have the advantage that posterior inference is tractable,
but are not expressive enough to model the kind of high-dimensional data we are interested in.
This chapter will then focus on non-linear LVMs, that are more suitable to model complex high-
dimensional data distributions but that require approximate inference as for them the integral in
(2.2) has no analytic solution. In Section 2.4 we will introduce variational auto-encoders (VAEs),
that merge ideas from deep learning and latent variable models by using deep neural networks to
define very flexible distributions for (2.1). We broadly define such non-linear LVMs in which the
non-linearities are given by deep neural networks as Deep Latent Variable Models (DLVMs).
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Before introducing VAEs, the next sections present scalable techniques based on variational
methods to perform approximate inference and learning in non-linear LVMs.

2.2 Posterior inference

The posterior distribution in (2.3) represents our updated beliefs about the latent variables after
having seen the data, and it is a key component for probabilistic reasoning in LVMs. In many
of the models presented in this thesis, however, the posterior is intractable due to the lack of
an analytic solution to the integral in (2.2) that appears in the denominator of (2.3). There are
broadly two classes of methods that were developed to approximate the posterior distribution.
They trade accuracy of the approximation with computational time:

1. Sampling techniques such as Markov Chain Monte Carlo (MCMC) methods provide a
sample-based approximation to the posterior distribution. In most cases the posterior is
needed primarily to evaluate expectations, that can be approximated using the posterior
samples with Monte Carlo integration. Sampling methods have the appealing property that
given infinite computational resources they generate exact results, and the approximation
only comes from the fact that we have a limited amount of resources in practice. However,
these methods are in general computationally expensive and do not scale well to large data
sets. Furthermore, it is often difficult to diagnose their convergence.

2. Deterministic approximation techniques are based on analytic approximations to the poste-
rior distribution, where we assume for example that the posterior comes from a particular
parametric family of distributions or that it factorizes in a certain way. These are very
scalable methods, but even given infinite computational resources they cannot generate
exact results. Among this class of methods we find for example the Laplace approximation,
variational inference and expectation propagation.

This thesis focuses on large data sets of high-dimensional data, for which variational inference
provides a good trade-off between quality of the approximation and scalability of the inference
procedure.

2.2.1 Variational inference

In variational inference we use the calculus of variations to find the posterior approximation q(z)
that minimizes a measure of dissimilarity between q(z) and the true posterior p(z|x). While there
are many different ways to measure of how different two distributions are, variational inference
uses the Kullback–Leibler (KL) divergence between the variational distribution and the posterior
distribution1, defined as

KL [q(z)||p(z|x)] = −Eq(z)
[
log

p(z|x)

q(z)

]
, (2.5)

1Variational inference can also be used with other divergences, see for example (Li and Turner, 2016).
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where Eq(z) denotes an expectation over q(z). Importantly, the KL divergence is a non-negative
quantity, i.e. KL [q(z)||p(z|x)] ≥ 0, with equality if and only if q(z) = p(z|x). The more similar
q(z) is to p(z|x), the smaller the KL divergence will be. Notice that this quantity is however not
a distance in the mathematical sense, as it is not symmetric if we swap the two distributions.

Our goal is to find a good variational approximation q(z) that minimizes the KL divergence in
(2.5). However, this quantity is still not tractable as the intractable posterior p(z|x) appears at
the numerator inside the logarithm. Using (2.3) we can rewrite (2.5) as

KL [q(z)||p(z|x)] = −Eq(z)
[
log

p(x, z)

q(z)
− log p(x)

]
= −Eq(z)

[
log

p(x, z)

q(z)

]
︸ ︷︷ ︸

F(q)

+ log p(x) , (2.6)

where the marginal likelihood log p(x) could be taken out of the expectation as it is independent
from z. The quantity F(q) is known as Evidence Lower BOund (ELBO), as due to the non-
negativity of the KL divergence it represents a lower bound to the evidence log p(x), i.e. log p(x) ≥
F(q) for all q(z). Notice that in (2.6) the numerator inside the logarithm is now tractable, since
it consists of the joint distribution in (2.1), and log p(x) is constant for all q(z). This means that
to minimize KL [q(z)||p(z|x)], and finding therefore the optimal variational approximation, we
can just maximize the ELBO with respect to the distribution q(z): the closer the ELBO is to
the marginal likelihood, the closer (in KL sense) the variational approximation will be to the
posterior distribution. Using variational methods, we can therefore reduce a complex inference
problem to a simpler optimization problem.

In practice, the variational distribution q(z) is often restricted to a particular parametric family
for which the ELBO is tractable or simple to approximate (e.g. Gaussian distribution), and the
maximization with respect to q(z) is therefore a maximization with respect to the parameters
of the family. The family of distribution q(z) needs to be flexible enough to provide a good
approximation to the posterior distribution, but simple enough to make the ELBO easy to
compute. We will return to this point when introducing the posterior approximation for the VAE
in Section 2.5.2.

2.3 Parameter learning

We assume that the likelihood pθ(x|z) and the prior pθ(z) belong to families of distributions
that depend on some unknown parameters θ. Given a training set with N data points {xi}Ni=1,
the optimal parameters θ? of the model can be learned using Maximum Likelihood Estimation
(MLE), i.e. maximizing

L(θ) =
N∑
i=1

log pθ(x
i)

=
N∑
i=1

log

∫
pθ(x

i, zi)dzi︸ ︷︷ ︸
Li(θ)
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with respect to the parameters θ of the model. Notice in particular that while we have a
different latent variable zi for each data point xi, the parameters θ of the likelihood and prior
are shared across all data points. In this thesis, we assume that the parameters are fixed but
unknown quantities. Alternatively, one could follow a Bayesian approach, considering them
as random variables with a prior distribution p(θ) and working with the joint distribution
p(xi, zi, θ) = p(x|zi, θ)p(zi|θ)p(θ). In the rest of this chapter, we will omit the superscript i when
only one data point is referred to, or when it is clear from the context.

As discussed in the previous sections, in many cases the marginal density of the observations
pθ(x) is intractable and needs to be approximated. As we have seen in Section 2.2.1, a possible
approximation can be obtained using the ELBO. This result can be re-derived in an alternative
way, provided below as it is widely used in the literature and gives interesting insights in variational
methods. For any distribution q(z) over the latent variables, we can compute a lower bound to
log pθ(x) as follows:

Li(θ) = log pθ(x) = log

∫
pθ(x, z)dz

= log

∫
pθ(x, z)

q(z)
q(z)dz

= logEq(z)
[
pθ(x, z)

q(z)

]
≥ Eq(z)

[
log

pθ(x, z)

q(z)

]
= Fi(θ, q) , (2.7)

where we have used the concavity of the logarithm and Jensen’s inequality to swap the logarithm
and the expectation in the last line. Fi(θ, q) is exactly the ELBO introduced in (2.6), but
we extended the notation to stress the dependence on the parameters θ of the model and on
data point xi. We have then shown in an alternative way that the ELBO is a lower bound to
log p(x), i.e. Li(θ) ≥ Fi(θ, q). To learn the parameters of the model, instead of maximizing the
log-likelihood L(θ), we can then maximize the total ELBO F(θ, q) =

∑N
i=1Fi(θ, q) with respect

to θ and q(z). As we have seen in Section 2.2.1, the variational distribution can be interpreted
as an approximation to the posterior distribution pθ(z|x), and the ELBO coincides with the
log-likelihood if and only if q(z) is the posterior distribution, i.e. q(z) = pθ(z|x).

2.3.1 The Expectation Maximization (EM) algorithm

The Expectation Maximization (EM) algorithm is a two-stage iterative optimization method
for MLE of the parameters of a model with latent variables in it (Dempster et al., 1977). The
EM algorithm can be formulated in its most general form starting from the ELBO in (2.7). It
alternates between two steps, that maximize Fi(θ, q) with respect to q(z) and θ respectively,
while holding the other fixed. We start from some parameters θ0, and until convergence we repeat

E-step: qk+1 = argmax
q
Fi(θk, q) (2.8)

M-step: θk+1 = argmax
θ
Fi(θ, qk+1) (2.9)
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Figure 2.1: Graphical model of a variational auto-encoder. Here and in the other graphical models in
this thesis empty nodes denote latent variables, while colored ones denote observations.

For many models, each of these step will be simpler than updating both q(z) and θ at the same
time (in Section 2.4.3 however, we will see that for variational auto-encoders it is easy to perform
joint maximization). As in the E-step we are holding the parameters of the model fixed, this step
is basically solving a posterior inference problem as the one introduced in Section 2.2.1, therefore
the optimal distribution is qk+1(z) = pθk(z|x). For models in which the posterior pθk(z|x) in the
E-step is intractable, we can do a partial optimization of q(z), i.e. approximate inference. In the
M-step we then fix the distribution over the latent variables and we maximize the ELBO with
respect to the parameters θ of the model, using for example gradient ascent methods.

Interestingly, for simpler classes of models for which inference is exact, we are guaranteed not to
decrease the marginal likelihood after each combined EM step, i.e. Li(θk+1) ≥ Li(θk). After the
E-step, that does not change the value of Li(θk) as θk is held fixed, we have Li(θk) = Fi(θk, q).
The subsequent maximization of Fi(θ, qk+1) in the M-step will therefore not decrease Li(θk+1),
that is lower bounded by Fi(θ, qk+1).

2.4 Variational auto-encoders

Variational auto-encoders (VAEs) (Kingma and Welling, 2014; Rezende et al., 2014) use deep
neural networks to parameterize the probability distributions that define a latent variable model,
while providing an efficient approximate inference procedure that scales to large dataset with
millions of data point. VAEs have recently had a huge impact in several communities. In the deep
learning community, VAEs are mostly being used as generative models of high-dimensional data,
e.g. to generate artificial images that resemble real ones (Gulrajani et al., 2016; Chen et al., 2017).
The focus in the probabilistic modelling community, on the other hand, is that of extending
to many different probabilistic models ideas first introduced with VAEs, i.e. using deep neural
networks to define flexible probability distributions while retaining scalable inference (Johnson
et al., 2016; Fraccaro et al., 2016c; Krishnan et al., 2017). This thesis fits in the latter category,
as these ideas are used to define expressive models to be used with high-dimensional sequential
data. To define a VAE, we need to describe its generative model (i.e. the latent variable model),
the inference network (i.e. the variational approximation), and how to learn the parameters of
the VAE.
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2.4.1 Generative model

The generative model of a VAE is given by the joint probability distribution pθ(x, z) = pθ(x|z)pθ(z)
already introduced in (2.4). z is a continuous latent variable with L dimensions, whose prior is
typically an isotropic multivariate Gaussian with zero mean and an identity covariance matrix,
i.e. pθ(z) = N (z; 0, I). The likelihood pθ(x|z), also known as decoder, is typically a Gaussian
distribution (for continuous data) or a Bernoulli distribution (for binary data) whose parameters
are computed by passing the latent state z through a deep neural network. In the continuous
case, we can have for example pθ(x|z) = N (x;µ,v) where the mean µ and the diagonal v of the
diagonal covariance matrix are parameterized by two deep neural networks (NN) that output
vectors in RD, with D being the dimensionality of the observation x:

µ = NN1(z) , log v = NN2(z) . (2.10)

In this case, the parameters θ of the model are the weights and biases of these neural networks.
The graphical model for the generative model of a VAE is shown in Figure 2.1. Notice that while
we have here described a model with a single latent variable, VAEs can also be extended to be
formed by multiple layers of stochastic units (Rezende et al., 2014; Sønderby et al., 2016b).

2.4.2 Inference network

Due to the non-linearities in the deep neural networks that parameterize pθ(x|z), in a VAE
the exact computation of the data log-likelihood pθ(x) is intractable. To perform Maximum
Likelihood learning of the parameters θ of the VAE, we can however use the ELBO introduced
in Section 2.3. How can we choose a variational approximation q(z) that performs well while
ensuring the scalability of the model to large data sets?

In traditional variational inference (Jordan et al., 1999), the variational approximation is restricted
to be in a parametric family of distributions, and for each data point {xi}Ni=1 we learn a different set
of parameters φi. To make this explicit in the notation, we can write the variational approximation
for data point i as qφi(z

i). For Gaussian variational approximations with diagonal covariance
matrix, φi would contain for example two L-dimensional vectors, one for the mean and one for
the diagonal of the covariance matrix. The parameters θ of the model and the parameters {φi}Ni=1

of the variational approximations for all data points are then learned maximizing the ELBO in
(2.7). After training, if a new data point arrives, to find its variational parameters we need to
optimize the ELBO again with respect to them.

This linear scaling of the parameters of the variational approximation with the number of data
points can however be a problem in large data sets that may contain millions of elements and for
which the variational approximation cannot be computed analytically. To deal with this issue, in
a VAE we perform amortised inference (Gershman and Goodman, 2014). Instead of having a
different set of parameters φi to learn for each data point, the variational parameters φ are now
shared across all data points (we have therefore dropped the i subscript in the notation). In a VAE
in particular, we use deep neural networks that take the data point xi as input, and output the
mean and diagonal covariance matrix of the corresponding Gaussian variational approximation,
i.e. qφ(zi|xi) = N (zi;µiq,v

i
q) with

µiq = NN3(x
i) , log viq = NN4(x

i) . (2.11)
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We therefore learn an inference network, also known as encoder, that allows us to compute the
parameters of the posterior approximation given the data point. The shared variational parameters
φ are now the weights and biases of the neural networks in (2.11), and the cost of learning them
is amortised across all data points. Thanks to the inference network, when a previously unseen
data point arrives we can immediately compute its variational approximation without the need
to run an expensive optimization of the ELBO, as needed in traditional variational inference.
However, the posterior approximation found with amortised inference will always be worse than
the one found with the traditional approach, as the parameters of the inference network are shared
across all data points. An in depth study on the impact of using inference networks in VAEs
can be found in (Cremer et al., 2018), that empirically shows that the main causes of inference
sub-optimality in VAEs are the approximations introduced by using amortized inference, rather
than the ones introduced by restricting the family of distributions the variational approximation
belongs to.

2.4.3 Parameter learning

In a VAE, the structure of the generative model and inference network introduced above allows
fast and scalable training. As we have seen in Section 2.3, to perform Maximum Likelihood
learning of the parameters θ of the model in the presence of latent variables, we can use the the
ELBO Fi(θ, q) introduced in (2.7). The variational approximation qφ(z|x) is however chosen to
be in a parametric family, therefore the maximization over q in (2.7) is actually a maximization
over the parameters φ (we therefore use below the notation Fi(θ, φ)). We can decompose the
ELBO in two terms:

Fi(θ, φ) = Eqφ(z|x)
[
log

pθ(x, z)

qφ(z|x)

]
= Eqφ(z|x) [log pθ(x|z)]︸ ︷︷ ︸

Reconstruction term

−KL [qφ(z|x)|| log pθ(z)]︸ ︷︷ ︸
Regularization term

. (2.12)

The reconstruction term encourages the likelihood pθ(x|z) and the inference network to be able
to reconstruct the data accurately, maximizing therefore the auto-encoding capabilities of the
VAE.2 The second term penalizes posterior approximations that are too far from the prior, and
acts therefore as a regularization term. As both generative and inference models are defined with
neural networks, we can efficiently compute gradients of the ELBO with respect to θ and φ using
the back-propagation algorithm (Rumelhart et al., 1986). Importantly, both set of parameters
can be updated jointly in a single optimization step, instead of iteratively optimizing one set
of parameters while keeping the other fixed as in the EM algorithm presented in Section 2.3.1.
The expectation in (2.12) does not have a closed form solution, but we can obtain a low-variance
differentiable unbiased estimator of the lower bound by using the reparametrization trick (Kingma
and Welling, 2014; Rezende et al., 2014) to be able to back-propagate through the latent variable
z, and Monte Carlo integration to approximate the intractable expectation. As both qφ(z|x) and
pθ(z) are Gaussians, the KL term can be computed analytically (Kingma and Welling, 2014).

In Figure 2.2 (left) we visualize the 2-dimensional latent space of a small VAE trained on the
first four digits (0, 1, 2 and 3) of the MNIST data set (LeCun and Cortes, 2010). The dataset

2In a standard auto-encoder the loss function typically used during training is in fact given by the reconstruction
term in (2.12).
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Figure 2.2: Latent representations of different MNIST digits from 0 to 3 obtained passing the images
through the inference network (left). Generated samples of MNIST digits obtained passing
the elements of a 10× 10 grid in latent space through the decoder (right).

used during training is unlabelled, i.e. it only consists of image data and does not contain any
class information. Despite the model is trained in a fully unsupervised manner, the VAE learns a
latent space that captures the natural clustering of the data, as by doing so it is easier to model
the data distribution (a higher ELBO is achieved). Not surprisingly, this feature has led several
authors to develop extensions of VAEs to the semi-supervised setting, for example to learn a
classifier given only a few labelled data points (Kingma et al., 2014; Maaløe et al., 2016; Maaløe
et al., 2017). Figure 2.2 also shows samples generated from a grid of points in the 2-dimensional
latent space, that allow us to visualize the different latent representations each of the dimensions
of z has learned to model the data. Looking at the last row of digits for example, it seems that
the horizontal axis is responsible for modelling rotations in the digits.

2.5 Improving variational auto-encoders

VAEs are very flexible deep latent variable models, that can potentially model a wide range
of very complex data distributions. However, this modelling power is limited by some of the
assumptions and approximations that are necessary to be able to define a scalable architecture.

As we have seen in Section, 2.3, instead of maximizing the intractable data log-likelihood log pθ(x)
we are maximizing the ELBO, relying on the fact that as the data log-likelihood is lower-bounded
by the ELBO, an high ELBO implies a high value for log pθ(x). However, we have no guarantees on
how tight the bound is, or whether the parameters that maximize the ELBO are also a maximum
of the data log-likelihood. For the bound to be tight, the variational approximation needs to
be as close as possible to the true posterior distribution, but for practical and computational
reasons we are often forced to use a simple Gaussian approximation that cannot properly fit
the complex multimodal posterior distributions of deep latent variable models. Other challenges
come from the fact that we are doing MLE and posterior inference jointly: as we are maximizing
over both the parameters θ of the generative model and φ of the inference network, it is possible
to learn a suboptimal generative model whose parameters depend on the choice of the posterior
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approximation (instead of being independent from it as if we could maximize over log pθ(x)
in an exact way). θ defines in fact the shape of the true posterior distribution (2.3), and the
optimal θ that maximizes the ELBO will be one such that the true posterior pθ(z|x) can be
better approximated by the parametric family chosen for the variational distribution qφ(z|x). In
this way we avoid the heavy penalizations in the ELBO for posterior samples that do not explain
the observations well enough.

We will now review different extensions to the basic model presented in Section 2.4, that were
proposed in the literature to solve some of these issues.

2.5.1 Tightening the ELBO

We can use importance sampling to define a new lower bound for log pθ(x) that is tighter than
the ELBO. The resulting model is called importance weighted auto-encoder (IWAE) (Burda
et al., 2015). To define this new objective function, we sample K latent variables {z(k)}Kk=1

independently from the same inference network qφ(z|x) used in Section 2.4.2, and we compute
the K sample importance-weighted estimate of the log-likelihood

FKi (θ, φ) = Ez(1),...,z(K)∼qφ(z|x)

[
log

1

K

K∑
k=1

pθ(x, z
(k))

qφ(z(k)|x)

]
. (2.13)

Importantly, for K = 1 the bound in (2.13) reduces to the ELBO introduced in (2.12), and using
more samples can only improve the tightness of the bound, i.e. for all K we have

log pθ(x) ≥ FK+1
i (θ, φ) ≥ FKi (θ, φ) .

Using more computational power we can therefore to improve the modelling performances. The
use of multiple posterior samples in the computation of the bound allows us to learn generative
model with a complex posterior distribution pθ(z|x) that would not be approximated well by a
single sample from the simple variational approximation of a VAE.

The work from Li and Turner, (2016) has extended traditional variational inference by defining
objective functions based on the Rényi’s α-divergence, a broad family of divergences that extends
both the objectives in (2.12) and in (2.13), and that allows to define lower and upper bounds to
the data log-likelihood.

2.5.2 Defining flexible posterior approximations

Ideally, we would like to have a very flexible inference network that can approximate very complex
posterior distributions. However, to make inference and parameter learning scalable, we often
restrict the variational approximation to a simple parametric distribution, e.g. a factorized
Gaussian. Can we build more flexible inference networks without increasing too much the
computational costs? As we will see below, there are different ways to achieve this.
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Normalizing flows. We can form a complex probability density qR(zR) by starting from a
simple density q0(z0) and constructing a chain ofR invertible parametric transformations fr, known
as normalizing flows, that expand and contract the initial density: zR = fR(fR−1(. . . f1(z0))).
The resulting probability density over the variable zR can be computed by repeatedly applying
the rule for change of variables, giving

log qR(zR) = log q0(z0)−
R∑
r=1

log

∣∣∣∣∣det
∂fr
∂zr−1

∣∣∣∣∣ .
In a VAE in particular, we can use this density to parameterize the approximate posterior
distribution, i.e. defining qφ(z|x) , qR(zR), choosing as initial density q0(z0) the same inference
network introduced in Section 2.4.2 (Rezende and Mohamed, 2015). We can use amortized
inference to learn the parameters of the flow, by making them dependent on the data point x
through a deep neural network. The scalability of this approach can be ensured by choosing
relatively simple transformations that have an efficient mechanism for computing the determinant
of the Jacobian ∂fr

zr−1
, as needed when evaluating qR(zR) in the ELBO. Some possible choices are

planar and radial flows (Rezende and Mohamed, 2015), inverse auto-regressive flows (Kingma et al.,
2016), Hamiltonian flows (Salimans et al., 2015) and masked auto-regressive flows (Papamakarios
et al., 2017).

Auxiliary variables. An alternative way to increase the flexibility of the variational approxi-
mation is by introducing an auxiliary latent variable a that parameterizes the joint variational
approximation in the extended space as qφ(z,a|x) = qφ(z|a,x)qφ(a|x), while keeping the genera-
tive model unchanged (Agakov and Barber, 2004; Ranganath et al., 2015; Maaløe et al., 2016).
Both distributions on the right hand side of the previous equation are parameterized by deep
networks. The variational approximation over z only is then obtained by integrating out the
auxiliary variables,

qφ(z|x) =

∫
qφ(z|a,x)qφ(a|x)da .

This integral is however intractable, therefore we cannot evaluate the ELBO in (2.12). As shown
in (Ranganath et al., 2015; Maaløe et al., 2016), this can be solved by maximizing a tractable
lower bound to the ELBO instead of the ELBO itself.

Variational Boosting. This method can be used to iteratively refine the variational approxi-
mation by incorporating additional covariance structure and by introducing new components to
form a mixture (Miller et al., 2017).

2.6 Summary and discussion

In this chapter we have seen that LVMs can be used to model complex high-dimensional data
distributions (Section 2.1). DLVMs use deep neural networks to parameterize the probability
distributions that define a LVM. While this allows to define very flexible models, it makes exact
inference and parameter learning intractable. We have then shown in Sections 2.2 and 2.3 how
they can be approximated with variational methods. In Section 2.4 we have introduced the VAE
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as a basic example of DLVM, and showed different ways to improve its performances in Section
2.5.

So far we have used LVMs to model static data, i.e. data with no temporal dependencies such as
the images of handwritten digits used in the VAE example in Section 2.4.3. If we think about
the images that form the frames of a video however, we know that there will be some temporal
correlations among them, i.e. we are dealing with dynamic data. In this case, we are interested
in modelling a sequence of observations (the whole video) instead of a single observation (one
frame). Consider a data set of N sequences of high-dimensional observations xi1:T = [xi1, . . . ,x

i
T ],

i = 1, . . . , N , from which we want to learn a model for the joint probability distribution over a
sequence pθ(x1:T ). For simplicity in the exposition, we make the assumption that the number
of time steps T of all sequences is fixed, but the generalization of the ideas presented below to
sequences with variable length Ti is straightforward. We could in principle treat the dynamic
data as static by assuming the factorization pθ(x1:T ) =

∏T
t=1 p(xt), and fit a LVM (e.g. a VAE)

to the data set of NT data points treated as if they were independent. While this can be a good
model for a single observation, it does not capture the temporal nature of the data. To do it, we
need to introduce some dependencies in the latent states zi1:T corresponding to all observations of
a sequence, instead of considering pθ(z1:T ) =

∏T
t=1 p(zt) as implicitly done when treating the data

used to train the LVM as static. In other words, we want to introduce some temporal structure in
the prior pθ(z1:T ) over the latent variables of a sequence. In the next chapter we will assume that
the latent variables form a chain, so that at each time step t, the variable zt directly depends on
zt−1. Latent variable models for sequential data that add this direct dependency among latent
variables have been studied - although in different contexts - for more than half a century, since
the seminal paper by (Kalman, 1960). This class of models is commonly referred to as state-space
models (where the term “state” is used to denote what we called in this chapter “latent variables”)
and will be the focus of the next chapter.



Chapter 3

State-space models

State-space models (SSM) provide a general and flexible methodology for sequential data modelling.
They were first introduced in the 1960s, with the seminal work of Kalman, (1960), and were
soon used in the Apollo Project to estimate the trajectory of the spaceships that were bringing
men to the moon (Mcgee and Schmidt, 1985). Since then, they have become a standard tool for
time series analysis in many areas well beyond aerospace engineering. In the machine learning
community in particular, they are used as generative models for sequential data, for predictive
modelling, state inference and representation learning. An excellent treatment of state-space
modelling for time series analysis can be found in the in book by Durbin and Koopman, (2012).

3.1 Definitions

We are given a sequence of T observation x1:T = [x1, . . . ,xT ], that possibly depend on some
inputs u1:T = [u1, . . . ,uT ], and we are interested in modelling the distribution pθ(x1:T |u1:T ).
This is a very general formulation, that can be applied in a wide variety of applications. We may
want to model for example how the movements of the steering wheel and of the brake/throttle
pedals (the inputs/controls to the model) change the position of a car (the observations/outputs).
Using ut = xt−1 it is also possible to define autoregressive models, as typically used in the deep
learning community when building generative models for text, videos or speech.

In a SSM we introduce at each time step a state variable zt that summarizes all the information
coming from the past and determines the present and future evolution of the system. SSMs can
then be seen as a temporal extension to the latent variable model introduced in Section 2.1, in
which the prior over the latent variables zt at each time step varies over time as it depends on
the previous state zt−1 and possibly some inputs ut to the model. We assume that the joint
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Figure 3.1: A graphical representation of a state-space model.

distributions of observations and states given the inputs factorizes as

pθ(x1:T , z1:T |u1:T ) = pθ(x1:T |z1:T )pθ(z1:T |u1:T )

=

T∏
t=1

pθ(xt|zt) · pθ(z1)
T∏
t=2

pθ(zt|zt−1,ut) (3.1)

A graphical representation of the distribution in (3.1) can be found in Figure 3.1. The emission
distribution pθ(xt|zt) specifies how the observation xt depends on the latent state zt, and can
therefore be seen as the likelihood in a LVM. pθ(zt|zt−1,ut) is called transition distribution, and
represents the prior distribution for the state at each time step given the previous state and the
current input to the model. This distribution fully determines the temporal evolution of the
system. The states of the SSM form a Markov chain, that captures the temporal correlations
and long-term dependencies between observations at different time steps. Using the d-separation
properties (Geiger et al., 1990) of the graphical model in Figure 3.1, we can see that this Markovian
structure leads to some interesting conditional independence properties that are implicitly assumed
in a SSM:

pθ(xt|z1:t,x1:t−1,u1:t) = pθ(xt|zt)
This property implies that given the present state zt the observation at time t does not
depend on the past states, inputs and outputs of the model. As in a LVM, the observation
xt is then fully determined by the latent state zt.

pθ(zt|z1:t−1,x1:t−1,u1:t) = pθ(zt|zt−1,ut)
Conditioned on zt−1, the current state zt does not depend on the previous states z1:t−2,
nor the past inputs or outputs. zt−1 then captures all the relevant information on the past.

pθ(zt|zt+1:T ,xt+1:T ,ut+1:T ) = pθ(zt|zt+1)
Given the next state zt+1, zt does not depend on the future states, inputs and outputs,
i.e. zt+1 captures all the relevant information on the future.

As we will see in the following, these conditional independence relationships are responsible for
many of the nice properties of SSMs.

Similarly to the LVM in Section 2.1, the marginal distribution over the observations can be
obtained by integrating out the states in (3.1), i.e.

pθ(x1:T |u1:T ) =

∫
pθ(x1:T , z1:T |u1:T )dz1:T . (3.2)
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Here we have assumed that z1:T are continuous variables, but the same ideas apply to the discrete
case by replacing the integral with a summation. Using Bayes’ rule we obtain the posterior
distribution of the states given the data:

pθ(z1:T |x1:T ,u1:T ) =
pθ(x1:T |z1:T )pθ(z1:T |u1:T )

pθ(x1:T |u1:T )
. (3.3)

Exact posterior inference is analytically tractable for two classes of SSMs, namely Linear Gaussian
SSMs and Hidden Markov Models. In all other cases, we will need to resort to approximate
inference, as discussed more in detail in Section 3.5.1.

In some cases we know the exact form of the emission and transition distributions, and we are
only interested in inferring the latent states for a given sequence, as shown in the ball tracking
example that will be presented in Section 3.4. SSMs can however be also used as black-box
methods for sequential data modelling, in which case the emission and transition distribution will
have a flexible structure that can be learned from the data, see (Fraccaro et al., 2016c, Chapter
5) for an example of this approach. Finally, in other cases we can use prior information on the
task at hand to define a specific parametric form for the emission and transition distribution that
helps the model to learn meaningful and interpretable latent representations. This approach lies
halfway between having a known or a black-box model, and will be used in (Fraccaro et al., 2017,
Chapter 6) and in (Fraccaro et al., 2018, Chapter 7).

3.2 Classes of state-space models

Depending on the exact form of the emission and transition distributions we can define several
classes of state-space models, that will be briefly presented in the following.

Linear Gaussian state-space models. The simplest class of SSMs is that of Linear Gaussian
state-space models (LGSSM), first introduced in (Kalman, 1960). We will present them in
detail in Section 3.4. As suggested by the name, both transition and emission distributions are
Gaussians, and all relationships between states and observations are linear. This makes posterior
inference for this model analytically tractable. Despite its simplicity, the LGSSM can be seen as
a generalization of many classical models used in time series analysis. As shown in (Durbin and
Koopman, 2012), the widely used autoregressive integrated moving average (ARIMA) model can
be expressed in state-space form. LGSSM can also model in a unified framework trends, seasonal
components, explanatory variables and interventions.

Hidden Markov models. A Hidden Markov model (HMM) is a SSM with discrete latent states
(Rabiner, 1990). As for the LGSSM, for a HMM we can perform exact posterior inference. Notice
that HMMs were developed in parallel to LGSSM, therefore some authors prefer to reserve the
term “state-space models” for models with continuous states, and use the term “hidden Markov
models” when dealing with discrete states. Here however we prefer to consider HMMs as SSMs,
as they satisfy all the assumptions we made in Section 3.1 (e.g. the factorization of the joint
distribution in (3.1)).

Non-Linear non-Gaussian state-space models. The linear-Gaussian assumptions of a
LGSSM are often too restrictive for many applications. If we relax them however we introduce an



22 State-space models

additional challenge, since inference becomes intractable and we need to resort to approximate
methods. See Section 3.5 for details. As we will see in Section 4.3, a flexible class of non-linear
state space models is given by deep state-space models (DSSM). In a DSSM, the transition and
emission distributions are parameterized with deep neural networks, and efficient training can
be achieved with amortized variational inference, computing the required gradients with the
back-propagation algorithm. For small data sets it is also common to model the transitions and
emissions with Gaussian processes, see (McHutchon, 2014) for an overview on the topic.

Hybrid architectures. Different authors have combined in a single architecture different classes
of SSMs. Murphy, (1998) and Ghahramani and Hinton, (2000) introduce for example Switching
Kalman filters, that use the discrete states of a HMM to select different possible regimes for the
continuous variables of a LGSSM.

SSMs in continuous time. In Section 3.1 we have tacitly assumed that the data is observed
at equally-spaced discrete time steps. SSMs can however be used also to model continuous time
systems, in which the state is used to represent the dynamics of higher-order linear systems as a
first order differential equation.

3.3 Posterior inference in the sequential setting

In (3.3) we have expressed the posterior distribution of the latent states given the whole sequence.
However, if we take into account the temporal structure of the data, there are also other types of
inference we can be interested in.

To illustrate this, consider the simplified speech recognition example of trying to understand what
a friend is saying in a very noisy bar. The observation xt represents the noisy speech waveform at
each time step, while zt is the discrete variable that represents the corresponding word pronounced
by the friend.1 In this example there are no inputs ut to the model, and we will therefore remove
them from the equations. At any point in time, we want of course to infer the word that the
friend is saying, i.e. compute the posterior distribution pθ(zt|xt). As the bar is noisy however, we
may not be sure of which word was pronounced. At time t we also know what the friend said
in x1:t−1, and we can therefore condition even on the past observations, i.e. compute pθ(zt|x1:t)
instead. The knowledge about what the friend was talking about at previous time steps can
provide some context and help us better infer zt. We call this task filtering, as it reduces the
noise compared to only using the present observation xt during inference. Despite this, due to
the noise in the bar we may still be unsure on the inferred word. In this case we can hope that
while we keep listening to the friend, there will be one clue that will clarify the inferred state
zt. In this case we are therefore also using knowledge on the future during inference, i.e. we are
considering the smoothed posterior pθ(zt|x1:T ). Finally, we may also want to predict what the
friend will say in the future given what was said until now, i.e. compute pθ(zt+k|x1:t).

1Before the advent of deep learning, HMMs have been widely used for speech recognition (Gales and Young, 2008).
Instead of using the raw waveform as observation, these systems typically use a frequency-domain representation
of it (e.g. cepstral coefficients). Instead of modelling words in the latent states, it is more common to model
phonemes. For clarity in the exposition, this is not discussed in this simplified example.
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We now provide a more general description of these inference tasks:

Filtering. We want to compute the filtered posterior distribution of the state zt given present and
past input and output information, i.e. pθ(zt|x1:t,u1:t). This task is particularly interesting
in an online setting, as it allows to compute the state estimate as the data comes in.

Smoothing. When doing smoothing, we compute the posterior pθ(zt|x1:T ,u1:T ), conditioned
not only on the past and present information, but also on future one. Since the smoothed
posterior requires the knowledge of the whole sequence, it can be computed only offline.
A trade-off between filtering and smoothing is fixed-lag smoothing, where we compute the
smoothed posterior only conditioning on data up to k time steps in the future (and not
on the whole sequence), i.e. we compute pθ(zt|x1:t+k,u1:t+k). Fixed-lag smoothing can be
used to further improve state estimation in an online setting, whenever a delay of k time
steps in admissible.

Prediction. We can also be interested in predicting the state of the system k steps in the future
given only past information, i.e. computing pθ(zt+k|x1:t,u1:t+k) (notice that if the inputs
ut are present, they need to be known up to time t+ k).

3.4 Linear Gaussian state-space models

We now discuss in detail the linear Gaussian state-space model (Kalman, 1960), that was briefly
introduced in Section 3.2. This model is also known as Linear Dynamical System, or more
informally as Kalman Filter. A LGSSM is typically written in terms of two equations, that specify
the relationship between the latent states at consecutive time steps and the observations:

zt = Atzt−1 + Btut + εt (3.4)
xt = Ctzt + δt (3.5)

The transition model (3.4) describes how to compute the state zt at each time step given
the previous state zt−1 and the current input ut. At and Bt are the transition and control
matrices respectively, and define a linear relationship between the variables. The transitions
are perturbed with a Gaussian process/transition noise εt ∼ N (εt; 0,Qt), where Qt is called
transition covariance. In a LGSSM we do not observe the state, but only a linearly transformed
version of it with additive Gaussian noise, as specified by the emission model (3.5). The emission
model can be seen as a linear regression model with time-varying inputs zt. In (3.5) Ct is called
emission matrix, and the measurement/observation noise δt is a Gaussian random variable,
i.e. δt ∼ N (δt; 0,Rt) with Rt being the observation covariance. Both transition noise and
observation noise are assumed to be independent across time steps. The matrices that define
the LGSSM can be time-varying (as indicated by the subscript t) and even depend on the past
information. However, for simplicity often the matrices are kept fixed over time, in which case
the model is defined as stationary (we will see an example of this at the end of this section).

The transition and emission distributions of a LGSSM can be easily obtained from (3.4) and (3.5)
using the linear transformation properties of Gaussian random variables:

pθt(zt|zt−1,ut) = N (zt; Atzt−1 + Btut,Qt) (3.6)
pθt(xt|zt) = N (xt; Ctzt,Rt) , (3.7)
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Figure 3.2: Ball tracking example, (x, y) plane.

where we have defined θt = [At,Bt,Ct,Qt,Rt]. We assume that the state at the first time step
is a Gaussian random variable, i.e. p(z1) = N (z1;µ1|0,Σ1|0). The joint distribution in (3.1) then
becomes:

pθ(x1:T , z1:T |u1:T ) = pθ(x1:T |z1:T )pθ(z1:T |u1:T )

=

T∏
t=1

pθt(xt|zt) · p(z1)
T∏
t=2

pθt(zt|zt−1,ut) (3.8)

where θ = [µ1|0,Σ1|0, θ1, .., θT ].

One of the major reasons for the widespread usage of LGSSMs is that posterior inference can
be done in an exact way, as we will discuss in Section 3.4.1. In Sections 3.4.2 and 3.4.3 we will
then see that the LGSSM provides simple methods to perform missing data imputation and
parameter learning. These properties will be exploited in the model of Fraccaro et al., (2017,
Chapter 6). Throughout this section we will use a simple example, introduced below, to showcase
the capabilities of LGSSMs.

Ball tracking example. LGSSMs are widely used for real-time object tracking, e.g. to estimate
the position of satellites or in GPS systems. To see why LGSSM are suitable for such applications,
we can look at a simplified example of tracking a ball thrown in vacuum from noisy measurements
of its position. The ball is subject to gravity, and we can measure with a noisy sensor its (x, y)
position but not its velocity or acceleration. We assume that the data is sampled every ∆ = 0.2
seconds. Figure 3.2 shows the true trajectory of the ball in the (x, y) plane (dashed blue line)
and the noisy measurements (black dots). As expected, due to the force of gravity acting on the
ball, the trajectory forms a parabola.

To define the parameters of a suitable LGSSM we can exploit our knowledge of the physics of
the moving ball. The discretized system dynamics can be modelled using Newton’s equations of
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motion as follows 
xt = xt−1 + ẋt−1∆

ẋt = ẋt−1

yt = yt−1 + ẏt−1∆− 1
2g∆2

ẏt = ẏt−1 − g∆

(3.9)

where ẋt and ẏt represent the velocities on the x (horizontal) and y (vertical) axes respectively,
and g = 9.81m

s2
is the acceleration due to gravity. From these equations we can see that the ball

is following a linear motion with constant velocity on the x axis, whereas on the y axis there is
an acceleration due to the force of gravity. The state of the system at each time step is given
by the positions (xt, yt) and velocities (ẋt, ẏt) of the ball. The true state is however unknown,
since our sensor can only measure the noisy position of the ball. We then need to be able to
estimate the true state from these noisy observations, task for which a stationary LGSSM is the
ideal candidate.

We define the emission matrix and the state of the systems as

C =

[
1 0 0 0
0 0 1 0

]
, zt =


xt
ẋt
yt
ẏt

 ,

so that the noisy observations xt can be modelled with (3.5):

xt = Czt + δt =

[
xt
yt

]
+ δt . (3.10)

The emission matrix derived from (3.9) is time-independent, and we have therefore removed the
subscript t that was used previously in this section. We further define the transition matrix,
control matrix and control inputs as:

A =


1 ∆ 0 0
0 1 0 0
0 0 1 ∆
0 0 0 1

 , B =


0 0 0 0
0 0 0 0
0 0 −1

2∆2 0
0 0 0 −∆

 , ut =


0
0
g
g

 ,

so that the noiseless transition equation zt = Azt−1+But will return exactly the system dynamics
of (3.9). Notice in particular that the gravity, an external force applied to the ball, can be modelled
using a fixed control input ut at each time step. We could have otherwise added it as an extra
fixed term in the state vector.

As Newton’s equations of motions give us the exact dynamics of a ball moving in the vacuum, we
set the transition noise covariance Q to zero. We then set R = 3I, where I is the identity matrix.
We assume that we do not know anything about the initial state z1, and we set its parameters to
µ1|0 = 0 and Σ1|0 = 2I. This is a relatively concentrated Gaussian around the origin that assigns
a low probability to the true initial state. This is done to show in the next sections that exact
inference works well despite this and how we can learn this vector.
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3.4.1 Posterior inference

For LGSSMs the filtered and smoothed posteriors at each time step can be computed analytically
using the Kalman filtering and smoothing algorithms. The proofs of the algorithms rely heavily
both on the Markovian structure of SSMs and on the linear-Gaussian assumptions, that imply
that the joint distribution over all variables, as well as all marginals and conditionals will be
Gaussians. In the following we will present the main intuitions behind this algorithms and a
sketch of the proofs. A detailed derivation can be found in (Murphy, 2012).

Filtering

In this section we present a filtering routine for the LGSSM known asKalman filtering. The Kalman
filtering algorithm (Kalman, 1960) recursively computes the marginal posterior distribution
pθ(zt|x1:t,u1:t) at each time step given the one at the previous time step, pθ(zt−1|x1:t−1,u1:t−1).
Using Bayes’ rule and the conditional independence properties of the model, we can rewrite this
posterior distribution as follows:

pθ(zt|x1:t,u1:t) = pθ(zt|xt,x1:t−1,u1:t)

=
pθ(xt|zt,x1:t−1,u1:t)pθ(zt|x1:t−1,u1:t)

pθ(xt|x1:t−1,u1:t)

=
pθ(xt|zt)pθ(zt|x1:t−1,u1:t)

pθ(xt|x1:t−1,u1:t)
. (3.11)

The first term of the numerator is the emission distribution pθ(xt|zt). The second one,
pθ(zt|x1:t−1,u1:t), can be seen as the predictive prior for zt, i.e. our “best guess” on the dis-
tribution of the state at time t given the output information up to time t − 1. At each time
step, the Kalman filter first performs a prediction step that computes the predictive prior given
the filtered posterior at the previous time step, followed by a measurement step in which this
distribution is updated using the information coming from the current observation that is carried
by the emission distribution. As typically done when working with Gaussian distributions, for
the computations we can only focus on the unnormalized distribution at the numerator of (3.11),
given by the product of two Gaussians.

Prediction step. We assume that pθ(zt−1|x1:t−1,u1:t−1) = N (zt−1;µt−1,Σt−1), the filtered
posterior at the previous time step, is known. Given this distribution and the transition distribution
of the LGSSM, the predictive prior can be computed as2

pθ(zt|x1:t−1,u1:t) =

∫
pθ(zt|zt−1,x1:t−1,u1:t)pθ(zt−1|x1:t−1,u1:t)dzt−1

=

∫
pθ(zt|zt−1,ut)pθ(zt−1|x1:t−1,u1:t−1)dzt−1

=

∫
N (zt; Atzt−1 + Btut,Qt)N (zt−1;µt−1,Σt−1)dzt−1

= N (zt; Atµt−1 + Btut︸ ︷︷ ︸
µt|t−1

,AtΣt−1A
T
t + Qt︸ ︷︷ ︸

Σt|t−1

) ,

2 In AT
t , the superscript T denotes the transpose operator; the sequence length, also denoted with T , will

instead always appear as a subscript.
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where we have used the conditional independence properties of the model and the well known
rules on the marginalization of conditional Gaussians (Bishop, 2006). Notice in particular that to
compute the mean µt|t−1 of this distribution we can simply apply the transition equations to the
mean µt−1 of the previous filtered posterior. The predictive prior at the first time step is given
by the initial distribution p(z1) = N (z1;µ1|0,Σ1|0).

Measurement step. In (3.11) we have seen that

pθ(zt|x1:t,u1:t) ∝ pθ(xt|zt)pθ(zt|x1:t−1,u1:t)

∝ N (xt; Ctzt,Rt)N (zt;µt|t−1,Σt|t−1) .

From this, the mean µt and the covariance matrix Σt of the filtered posterior at time t can be
computed using the formulas for Bayes’ rule for Gaussian distributions of this form and applying
the matrix inversion lemmas (Murphy, 2012). This gives

µt = µt|t−1 + Kt(xt −Ctµt|t−1)

Σt = (I−KtCt)Σt|t−1 ,

where we have defined the Kalman gain matrix Kt as

Kt = Σt|t−1C
T
t (CtΣt|t−1C

T
t + Rt)

−1 .

To understand the algorithm, it is instructive to look in particular at the update equations for
the mean. The posterior mean µt is obtained shifting the mean of the predictive prior by a factor
proportional to the residual rt = xt−Ctµt|t−1, that is the difference between the true observation
and the predicted one. As the Kalman gain Kt grows when the observation covariance Rt becomes
smaller, the Kalman filter will give more importance to the true observation when the emission
noise is smaller. On the other hand, if the covariance of the predictive prior Σt|t−1 is small
(i.e. the model is quite sure of its estimation) Kt decreases, therefore reducing the contribution of
the residual.

It is important to notice that the prediction and measurement steps of the Kalman filter only
depend on the filtered posterior at the previous time step and the current input ut and output xt.
This implies that there is no need to reprocess the whole sequences of x1:t−1 and u1:t−1 at each
inference step, making this iterative algorithm efficient and suitable for the online setting. The
computational complexity of the Kalman filter scales cubically in the output dimensionality (due
to the matrix inversion in Kt) and quadratically in the state size (due to the matrix multiplication
for Σt), that make it not efficient for very high-dimensional problems (Murphy, 2012). To avoid
issues with singular matrices, some more numerically stable versions this algorithm have been
developed. Among these, we find for example the square-root filter, that works with Cholesky
decompositions of covariance matrices, and the information filter, that updates the natural
parameters of the Gaussians instead of the moments.

Given the output of the Kalman filter, it is also possible to compute the marginal likelihood
pθ(x1:T |u1:T ) as

log pθ(x1:T |u1:T ) =
T∑
t=1

log pθ(xt|x1:t−1,u1:t) =
T∑
t=1

logN (xt; Ctµt|t−1,CtΣt|t−1C
T
t + Rt) .

(3.12)



28 State-space models

0 100 200 300 400 500 600 700
x

0

50

100

150

200

250

y

Data
True
Filtered
Smoothed

Figure 3.3: Inference in the ball tracking example.

Smoothing

The Kalman filter processes the whole sequence recursively forwards in time. From its output,
we can easily compute also the smoothed posterior distribution with the Rauch-Tung-Striebel
smoother (Rauch et al., 1965), also known as Kalman smoother. After running a forward pass with
the Kalman filter, the algorithm does a backward recursion during which it combines information
coming from the future observations with the quantities computed during the forward pass.

We initialize the Kalman smoother using the last step of the Kalman filter, i.e. pθ(zT |x1:T ,u1:T ) =
N (zT ;µT ,ΣT ). To compute the smoothed distribution at time t, we then process the se-
quence backwards in time, combining the smoothed distribution at time t + 1, denoted as
pθ(zt+1|x1:T ,u1:T ) = N (zt+1;µt+1|T ,Σt+1|T ), with the parameters obtained during prediction
step and the measurement step of the Kalman filter. We then obtain pθ(zt|x1:T ,u1:T ) =
N (zt;µt|T ,Σt|T ), with

µt|T = µt + Jt(µt+1|T − µt+1|t)

Σt|T = Σt + Jt(Σt+1|T −Σt+1|t)J
T
t ,

where Jt = ΣtA
T
t+1Σ

−1
t+1|t.

A derivation of the algorithm, that exploits the fact that zt does not depend on xt+1:T and ut+1:T

if we condition on zt+1, can be found in (Murphy, 2012).

Ball tracking example. We run the Kalman filter and smoother on the ball tracking example
presented in Section 3.4. In Figure 3.3 we plot the true trajectory, together with the first and
third components of the estimated state vector (i.e. the estimated x and y coordinates). We first
notice that the filtered posterior distribution drastically reduces the noise in the data, especially
towards the end of the sequence as it can leverage information from many data points. The
smoothed posterior distribution manages to accurately estimate the trajectory and reduce the
noise at all time steps, as it can use data from the whole sequence. As expected, its trajectory
it is much smoother that the one estimated by the Kalman filter. Finally, notice that the filter
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Figure 3.4: Missing data imputation in the ball tracking example.

manages to correct the choice of initial state, that was chosen on purpose to be far from the true
one. This is possible as the emission noise was chosen to be relatively small, in which case at the
first time step the Kalman gain will be big and give more importance to the true observation.

3.4.2 Missing data imputation

In many applications we have time series that have been observed irregularly over time. An
appealing properties of LGSSM is that they allow to deal with missing data in a simple and
principled way. We can in fact use the original Kalman filtering and smoothing algorithms at all
time steps taking Kt = 0 (or equivalently Ct = 0) at the missing time points. In this case, the
measurement step will only propagate the sufficient statistics computed during the prediction
step, i.e. we will have

µt = µt|t−1

Σt = Σt|t−1 ,

so that the filtered posterior coincides with the predictive prior. Once the filtered or smoothed
posterior are computed, the missing observation can be estimated simply as Ctẑt, with ẑt being
the inferred value. In a similar way, the algorithms can be extended to partially observed xt,
i.e. observations xt with missing elements, by not considering in the emission matrix the rows
corresponding to a missing element, see (Durbin and Koopman, 2012) for details.

We finally notice that predictions with a LGSSM can be obtained by treating future observations
as missing values, simply running the Kalman filtering algorithm setting Kt = 0 for the future
time steps that we want to predict.

Ball tracking example. We consider the same trajectory as in Figure 3.3, but we now only
observe the first 10 and last 8 observations, treating all the central ones as missing. In Figure 3.4
we plot the estimated trajectory from the Kalman filter and smoother. We see that the filtered
posterior does not provide a good estimate of the trajectory when the data is missing, as the
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first 10 time steps only do not provide enough reliable information (the estimate recovers only
with the last 8 observations around x = 600). As opposed to the filtered posterior, the smoothed
one can use the information on the last 8 observations at all time steps. The smoothed posterior
is therefore very accurate, and close to the one obtained in Figure 3.3 when all the data was
observed.

3.4.3 Parameter learning with the EM algorithm

In some cases, some or all of the parameters of the LGSSM are unknown, and we need to learn
them from data. Apart from having parameters to learn we also have latent variables to infer,
which is the scenario for which in Section 2.3.1 we introduced the EM algorithm.3 The EM
algorithm for LGSSMs was first introduced in (Shumway and Stoffer, 1982) assuming that the
emission matrix was known, and then generalized in (Ghahramani and Hinton, 1996) to models
where all parameters were unknown. The E-step for a LGSSM can be easily done exploiting
the tractability of the filtered and smoothed posteriors, and the optimization of all variables
in the M-step has a simple closed form solution. In this section we will see as an example
how we can learn the parameters of the prior p(z1) of the initial state. Detailed derivations for
all the parameters of the emission and transition distributions of the LGSSM can be found in
(Ghahramani and Hinton, 1996) or (Bishop, 2006). A discussion on the identifiability of the
model when learning all the parameters can be found in (Roweis and Ghahramani, 1999).

The parameters µ1|0 and Σ1|0 of the initial state Gaussian prior can be optimized by maximizing
the ELBO in (2.7). In the E-step of (2.8) we maximize the ELBO with respect to the variational
approximation while keeping the parameters fixed. The optimal distribution for the LGSSM is
given by the smoothed posterior marginal at the first time step, i.e. qk+1(z1) = pθ(z1|x1:T ,u1:T ).
In the M-step of (2.9) we then keep the posterior distribution fixed, and maximize the ELBO
with respect to the parameters of the initial state prior. In this maximization, all the terms that
do not depend on µ1|0 or Σ1|0 can be absorbed in an additive constant, giving the ELBO:

F(µ1|0,Σ1|0) = −1

2
log det(Σ1|0)− Epθ(z1|x1:T ,u1:T )

[
1

2
(z1 − µ1|0)

TΣ−11|0(z1 − µ1|0)

]
+ constant

where det(·) denotes the matrix determinant and the superscript T the transpose operation. By
setting to 0 the partial derivatives of F(µ1|0,Σ1|0) with respect to each of the parameters we
obtain the M-step updates

µnew1|0 = µ1|T

Σnew
1|0 = Σ1|T − µ1|Tµ

T
1|T .

This new initial state can now be used to compute the smoothed posterior needed for the E-step
in the following iteration of the EM algorithm, that is let to run until convergence.

As we have seen in (3.12), as a byproduct of the Kalman filtering algorithm we can compute the
marginal likelihood of the model. An alternative approach to ML learning of the parameters of the
LGSSM is then the direct numerical optimization of this quantity with gradient-based methods
such as the L-BFGS algorithm (Liu and Nocedal, 1989). Shumway and Stoffer, (1982) suggest to

3The same equations introduced in Section 2.3.1 apply, if we consider x = x1:T and z = z1:T .
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Figure 3.5: Parameter learning in the ball tracking example.

use the EM algorithm for the first iterations of the learning procedure and switch to gradient-based
methods after some iterations, arguing that the EM algorithm has a slow convergence when the
parameters approach the local optimum but is more robust than gradient-based methods to poor
parameter initializations.

In this discussion we have assumed that the parameters of the LGSSM are unknown but fixed
quantities. It is however possible to consider the parameters as random variables, that results in
the Bayesian LGSSM. This Bayesian approach is particularly useful when we need to include
strong prior constraints in the parameters to be able to find suitable solutions. One problem
that arises in this case is that state inference becomes intractable, and one needs to resort to
approximate inference techniques such as the variational EM algorithms of Beal, (2003); Barber
and Chiappa, (2007).

Ball tracking example. In our description of the ball tracking example in Section 3.4 we
mentioned that the choice of the prior over the initial state was suboptimal. We now use the EM
algorithm to learn the parameters of the initial state µ1|0 and Σ1|0, running it for 20 iterations and
initializing the parameters as before. In Figure 3.5a, we plot the state inferred with the Kalman
filter and smoother after the optimization. We see that now both the filtered and smoothed
trajectories match very closely the ground truth one. In Figure 3.5b we plot the change in
log-likelihood of the model during the EM algorithm. As discussed in Section 2.3.1, as inference
during the E-step is exact, the log-likelihood does not decrease after each EM iteration.

3.5 Non-linear non-Gaussian state-space models

While the LGSSM provides an elegant mathematical framework for exact state inference, missing
data imputation and parameter learning, its applicability is limited by the fact that in many
cases the linear-Gaussian assumptions for the transitions and emissions are too strong. These
assumptions are no longer valid for example if we consider small extensions to the ball tracking
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Figure 3.6: Tracking a ball in a video. At each time step t we observe a single frame of the video.

example discussed in Section 3.4:

• Non-linear transitions. To make the transition linear we had to assume that the ball was
traveling in vacuum. In a more realistic setting however the ball moves in air, therefore we
also need to take into account air resistance, which adds a non-linear relationship between
the velocities at consecutive steps and would strongly modify the final trajectory. Other
non-linearities could be given by obstacles in the trajectory of the ball, e.g. walls, see
(Fraccaro et al., 2017, Chapter 6) for an example.

• Non-Gaussian transition noise. In a real world scenario a precise model of the ball would
take into account many physical effects such as the spin of the ball, its roughness, the altitude
and the humidity of the air. As it would be very difficult to find a precise mathematical
model for these we may want to treat them as noise. These effects would slightly but
consistently modify the trajectory of the ball, therefore a Gaussian noise would probably
be a poor choice for this (we may need for example a skewed distribution).

• Non-linear emissions. To have linear emissions, we assumed that we had a noisy sensor that
could track the 2-dimensional (x, y) position of the ball. In (Fraccaro et al., 2017, Chapter
6) we will assume that our sensor is a camera, therefore instead of observing the positions
over time we observe a video of the ball flying in the vacuum. An example of a sequence of
observations is given in Figure 3.6. In this case our observations will be high-dimensional
images, that can only be modelled accurately with non-linear emissions, e.g. parameterized
with convolutional neural networks.

• Non-Gaussian emission noise. In the ball tracking example we have assumed that the
emission noise is Gaussian. Inaccurate sensor however may return many outliers, that would
be better modelled with a heavy-tailed distribution such as a Student-t distribution.

In all these cases suitable emission distribution pθ(xt|zt) and transition distribution pθ(zt|zt−1,ut)
will be non-linear and/or non-Gaussian. The main issue that arises in this case is that inference
and parameter learning become intractable, and will need to be approximated as shown in Section
3.5.1.

Ball tracking example with air resistance. We now illustrate how the trajectory of the
ball changes if we assume that it travels in air instead of vacuum (Labbe, 2015). To model the
physics of this system, the velocities in the equations of motions in (3.9) need to be modified by
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Figure 3.7: Ball tracking example with air resistance.

subtracting two extra non-linear components that take into account the air resistance:



xt = xt−1 + ẋt−1∆

ẋt = ẋt−1 − 0.0039 + 0.0058

1+e(
√
ẋ2t−1+ẏ

2
t−1−35)/5

ẋt−1∆

yt = yt−1 + ẏt−1∆− 1
2g∆2

ẏt = ẏt−1 − g∆− 0.0039 + 0.0058

1+e(
√
ẋ2t−1+ẏ

2
t−1−35)/5

ẏt−1∆ .

(3.13)

A detailed derivation of these equations is out of the scope of this thesis, for which we are only
interested in their non-linear nature.

In Figure 3.7a we see that even if we use the same initial conditions the trajectory is no longer a
parabola, since the air resistance slows down the ball in a non-linear way. In Figure 3.7b we apply
the same LGSSM introduced in Section 3.4 to this new data. As expected, the linear transitions
of the LGSSM cannot properly model the non-linear effect of the air resistance, resulting in a
poor state estimation. We will see in the next section that this issue can be corrected using
non-linear models.

3.5.1 Approximate inference and learning

We now provide a brief overview of the main algorithms developed over the years for approximate
inference and learning in non-linear non-Gaussian SSMs. A more in depth treatment of both
deterministic and stochastic approximation techniques can be found in (Barber et al., 2011) and
(Särkkä, 2013). In Section 4.3.1 we will then discuss variational methods for non-linear SSMs
parameterized by deep neural networks.
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3.5.1.1 Extended Kalman Filter

We now consider non-linear models with Gaussian noise, in which the transition and emission
equations are described by two non-linear differentiable functions, denoted as f and g respectively:

zt = f(zt−1,ut) + εt

xt = g(zt) + δt

with εt ∼ N (εt; 0,Qt) and δt ∼ N (δt; 0,Rt). The Extended Kalman Filter (EKF) (Smith
et al., 1962) is a deterministic approximation technique that can be used to compute a Gaussian
approximation to the posterior distribution for this class of models. It works by linearizing both
functions around the estimated posterior mean using a Taylor series expansion, and applying the
standard Kalman filtering and smoothing algorithms in this new linearized space.

We linearize the transition equation around the previous state estimate µt−1:

f(zt−1,ut) = f(µt−1 + (zt−1 − µt−1),ut) ≈ f(µt−1,ut) + Ft(zt−1 − µt−1)

where Ft is the Jacobian matrix of f evaluated at µt−1.

Ft =
∂

∂zt−1
f(zt−1,ut)

∣∣∣∣
zt−1=µt−1,ut

In a similar way, we linearize the emission equation around the predictive prior mean µt|t−1:

g(zt) = g(µt|t−1 + (zt−µt|t−1)) ≈ g(µt|t−1) + Gt(zt − µt|t−1)

Gt =
∂

∂zt
g(zt)

∣∣∣∣
zt=µt|t−1

.

The resulting transition and emission distributions are now linear with respect to zt−1 and zt, i.e.

pθt(zt|zt−1,ut) = N (zt; f(µt−1,ut) + Ft(zt−1 − µt−1),Qt)

pθt(xt|zt) = N (xt; g(µt|t−1) + Gt(zt − µt|t−1),Rt) ,

and we can then apply the standard Kalman filter and smoothing algorithms. The computational
complexity of the EKF is therefore similar to the one of the Kalman filter, apart from the
computations needed for the non-linear functions f and g and their Jacobians. Notice that the
EKF algorithm reduces to the standard Kalman filter if we use f(zt−1,ut) = Atzt−1 + Btut and
g(zt) = Ctzt, i.e. we have a LGSSM.

The EKF can also be used as E-step when learning the parameters of the model, as done in
(Ghahramani and Roweis, 1999) for models in which Gaussian radial basis functions are used to
model non-linearities.

3.5.1.2 The Unscented Kalman Filter

Due to the linearization steps, the EKF is mostly suitable for systems that are almost linear, as it
may quickly diverge with highly non-linear f and g. The Unscented Kalman Filter (UKF) (Julier
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Figure 3.8: Tracking the ball with a non-linear model and the Unscented Kalman filter/smoother.

and Uhlmann, 1997) works similarly to the EKF, but provides a different way to approximate
Gaussian random variables that performs better with highly non-linear transitions and emissions.
Here we will give the main intuition behind the algorithm and an example of application, see
(Murphy, 2012) for a thorough derivation. Instead of first approximating the non-linear functions
by linearization and then passing a Gaussian distribution through it as in the EKF, the UKF
first passes a deterministically chosen set of points through the non-linear functions and then
approximates the resulting distribution with a Gaussian. This set of points, called sigma points,
are deterministically sampled and chosen to capture the mean and covariance of the Gaussian
random variables. The UKF is typically more accurate and robust than the EKF, and has a
similar computational complexity. Furthermore, the UKF does not require derivatives, and can
therefore work even for non-differentiable functions. As shown in (Wan and van der Merwe, 2001;
Särkkä, 2008), the UKF can also be extended to perform smoothing.

Ball tracking example with air resistance. We start from the same LGSSM used in Section
3.4, but we make the transition transition equation f of the SSM non-linear as in (3.13). In
Figure 3.8 we then use the Unscented Kalman filter and smoother to perform state inference. As
expected, we see that thanks to the non-linear formulation of the model the estimated trajectory
is much closer to the true one compared to the one obtained the LGSSM of Figure 3.7b.

3.5.1.3 Importance sampling

Importance sampling is a sampling technique that can be used to approximate posterior expecta-
tions as well as to find a sample-based approximation to the posterior pθ(z1:t|x1:t,u1:t) (Doucet
et al., 2001).

Consider the task of finding the posterior expectation of a generic function of the latent states
h(z1:t), i.e. computing

E(h) = Epθ(z1:t|x1:t,u1:t) [h(z1:t)] =

∫
h(z1:t)pθ(z1:t|x1:t,u1:t)dz1:t . (3.14)
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For example, solving this integral with h(z1:t) = z1:t would return the posterior mean. The
posterior distribution over which we want to take the expectation is intractable for non-linear
non-Gaussian models, for which we can only evaluate the unnormalized posterior (i.e. the
joint distribution pθ(x1:t, z1:t|u1:t)). We can however find an approximation to this integral by
introducing an auxiliary distribution q(z1:t), called importance distribution, as we did with the
variational distribution that we used to define the ELBO in (2.7). To stress the fact that the
importance distribution may depend on x1:t and u1:t, we denote it as q(z1:t|x1:t,u1:t).

For any distribution q(z1:t|x1:t,u1:t) whose support includes the support of pθ(z1:t|x1:t,u1:t), we
can rewrite the integral in (3.14) as

E(h) =

∫
h(z1:t)

pθ(x1:t, z1:t|u1:t)

pθ(x1:t|u1:t)
dz1:t

=

∫
h(z1:t)

pθ(x1:t,z1:t|u1:t)
q(z1:t|x1:t,u1:t)

q(z1:t|x1:t,u1:t)dz1:t∫ pθ(x1:t,z1:t|u1:t)
q(z1:t|x1:t,u1:t)

q(z1:t|x1:t,u1:t)dz1:t

=

∫
h(z1:t)w(z1:t)q(z1:t|x1:t,u1:t)dz1:t∫

w(z1:t)q(z1:t|x1:t,u1:t)dz1:t
(3.15)

where we have defined the unnormalized importance weights w(z1:t) as

w(z1:t) =
pθ(x1:t, z1:t|u1:t)

q(z1:t|x1:t,u1:t)
. (3.16)

If we choose an importance distribution which is easy to sample from, e.g. a multivariate Gaussian,
we can find a sample-based approximation to the integral in (3.14). We first draw R i.i.d. samples
z
(r)
1:t ∼ q(z1:t|x1:t,u1:t), that are also referred to as particles in this setting, and successively

approximate the expectation with Monte Carlo integration:

Ê(h) =
1
R

∑R
i=1w(z

(r)
1:t )h(z

(r)
1:t )

1
R

∑R
i=1w(z

(r)
1:t )

=
R∑
i=1

w̃
(r)
t h(z

(r)
1:t ) , (3.17)

where we have defined the normalized importance weights as

w̃
(r)
t =

w(z
(r)
1:t )∑R

i=1w(z
(r)
1:t )

.

The estimate Ê(h) is therefore computed with a weighted average, whose weights depend on the
ratio between the densities of pθ(x1:t, z1:t|u1:t) and q(z1:t|x1:t,u1:t). If q is smaller than p at a
certain state z1:t the corresponding weight will be high, vice versa the weight will be small if
q is larger than p. This allows to correct in the estimate Ê(h) the mismatch between the two
distributions, making sure that we are correctly representing the high-probability regions of p
despite the fact we are sampling from q. Asymptotically, as R → ∞ the estimate Ê(h) will
converge to E(h). In practice however we can only use a finite number of samples, and this
makes this estimate biased and only accurate if the choice of the specific form of the importance
distribution is sufficiently close to the posterior distribution (so that most of the particles fall in
the high probability regions of p).
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Notice that the set of weight-particle pairs {(w̃(r)
t , z

(r)
1:t )}Ri=1 can be seen as a sample-based

approximation of the posterior pθ(z1:t|x1:t,u1:t), defined as a weighted mixture of delta functions
centered at the samples:

p̂θ(z1:t|x1:t,u1:t) =

R∑
i=1

w̃
(r)
t δ(z1:t − z

(r)
1:t ) .

Using this approximation we can in fact rewrite (3.17) as

Ê(h) =

∫
h(z1:t)p̂θ(z1:t|x1:t,u1:t)dz1:t .

One issue with importance sampling is that it is highly inefficient in high dimensional cases. Also,
in the sequential setting this algorithm is not suitable for recursive estimation of the filtered
posterior distribution. At each new time step we would have in fact to compute the importance
weights over the whole sequence of states, i.e. the computational complexity increases over time.
We now present a sequential extension of this algorithm that mitigates both of these problems.

3.5.1.4 Particle filtering

In Section 3.4.1 we have seen that the Kalman filter provides a closed-form expression for the
recursive estimation of the marginal posterior distribution pθ(zt|x1:t,u1:t) given the one at the
previous time step, pθ(zt−1|x1:t−1,u1:t−1). Particle filtering (Doucet et al., 2001; Doucet and
Johansen, 2008), on the other hand, uses a sequential extension of importance sampling to
recursively update a numerical approximation to the posterior over the whole sequence up to
time t, i.e. pθ(z1:t|x1:t,u1:t), given the posterior pθ(z1:t−1|x1:t−1,u1:t−1) at time steps 1 : t − 1.
Using the laws of probability as well as the conditional independence properties of SSMs, we can
in fact decompose the posterior pθ(z1:t|x1:t,u1:t) as

pθ(z1:t|x1:t,u1:t) =
pθ(x1:t, z1:t|,u1:t)

pθ(x1:t|u1:t)

=
pθ(xt, zt|x1:t−1, z1:t−1,u1:t)pθ(x1:t−1, z1:t−1|,u1:t−1)

pθ(xt|x1:t−1,u1:t)pθ(x1:t−1|u1:t−1)

=
pθ(xt|x1:t−1, z1:t,u1:t)pθ(zt|x1:t−1, z1:t−1,u1:t)

pθ(xt|x1:t−1,u1:t)
pθ(z1:t−1|x1:t−1,u1:t−1)

=
pθ(xt|zt)pθ(zt|zt−1,ut)

p(xt|x1:t−1,u1:t)
pθ(z1:t−1|x1:t−1,u1:t−1) .

To allow for recursive estimation, we further assume the following factorization for the importance
distribution

q(z1:t|x1:t,u1:t) = q(zt|z1:t−1,x1:t,u1:t)q(z1:t−1|x1:t−1,u1:t−1) = q(z1)
t∏
l=2

q(zl|z1:l−1,x1:l,u1:l) .
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The unnormalized importance weights then become

w(z1:t) =
pθ(x1:t, z1:t|,u1:t)

q(z1:t|x1:t,u1:t)

=
pθ(xt|zt)pθ(zt|zt−1,ut)pθ(x1:t−1, z1:t−1|,u1:t−1)

q(zt|z1:t−1,x1:t,u1:t)q(z1:t−1|x1:t−1,u1:t−1)

=
pθ(xt|zt)pθ(zt|zt−1,ut)
q(zt|z1:t−1,x1:t,u1:t)

w(z1:t−1)

which implies that the normalized importance weights are

w̃
(r)
t ∝

pθ(xt|zt)pθ(zt|zt−1,ut)
q(zt|z1:t−1,x1:t,u1:t)︸ ︷︷ ︸

αt

w̃
(r)
t−1 . (3.18)

The importance weight at time t can then be simply computed given the ones at the previous
time step by multiplying the incremental importance weights αt. The computational complexity
of the algorithm stays therefore constant over time.

Starting from a set of particles {(w̃(r)
t−1, z

(r)
1:t−1)}Ri=1, that provides an empirical estimate of the

posterior at times 1 : t − 1, we can obtain an approximation of the posterior at times 1 : t

by extending each particle sampling from q(zt|z(r)1:t−1,x1:t,u1:t) and updating the corresponding
weight using (3.18). This procedure can be initialized by sampling R i.i.d particles from q(z1).

The algorithm discussed until now is also known as sequential importance sampling. A particle
filter combines sequential importance sampling with a resampling step that is added to prevent
degeneracy in the particles. In practice in fact, as t increases the distribution of the weights will
become skewed, with just a small percentage of the particles having a non-zero weight. Only a few
particles will then effectively approximate the posterior distribution, and a lot of computational
resources will be wasted on particles that have a negligible effect on the approximation of the
expectation (3.17). However, if at each iteration we resample with replacement the R particles
using their weight as resampling probabilities, particles with higher weight will be replicated
while particles with low weight will be discarded. This will result in a new set of R particles, that
will be assigned weight 1

R . A discussion on different resampling methods can be found in (Doucet
and Johansen, 2008). While beneficial to prevent degeneracy in the particles, this resampling
step is introduces some variance in the estimate and should therefore be done only if necessary.
Liu and Chen, (1998) provide the effective sample size

Reff =
1∑R

r=1(w̃
(r)
t )2

as a metric to measure of the variance of the weights and suggest whether the resampling step
should be done. In practice the resampling step is only done if the effective sample size is below
a certain number of particles, e.g. Reff < 0.7R.

The choice of the importance distribution q is crucial to the success of the particle filter. The
optimal distribution in order to minimize the variance of the importance weights is given by

qopt(zt|z1:t−1,x1:t,u1:t) = pθ(zt|zt−1,xt,ut) =
pθ(xt|zt)pθ(zt|zt−1,ut)

pθ(xt|zt−1,ut)
(3.19)



3.6 Summary and discussion 39

In practice this distribution is often intractable, and many approximations have been proposed
over the years. Among the simplest ones, the bootstrap filter uses the prior distribution as
importance distribution

q(z1:t|x1:t,u1:t) = pθ(z1:t|u1:t) = p(z1)

t∏
l=2

pθ(zl|zl−1,ul)

so that w̃(r)
t ∝ pθ(xt|zt)w̃(r)

t−1. In (Doucet et al., 2000; van der Merwe et al., 2000) the authors
propose to use the approximate Gaussian posterior obtained with the EKF and UKF as proposal
distributions. As we will see in Section 4.3.2, it is also possible to learn flexible importance
distributions parameterized by deep neural networks.

We finally notice that as a byproduct of this inference procedure we can also obtain an unbiased
estimate of the marginal likelihood pθ(x1:t|u1:t), the denominator in (3.15), using the intermediate
unnormalized weights:

p̂θ(x1:T |u1:T ) =
T∏
t=1

1

R

R∑
r=1

w(z
(r)
1:t ) . (3.20)

Particle fiiltering is in general more computationally demanding but more accurate than the EKF
and UKF. It is a special case of the broader class of Sequential Monte Carlo algorithm (Del Moral
et al., 2006), and borrows from it many of the techniques developed to improve sampling. For
example, MCMC steps can be used after a resampling step to avoid having too may identical
copies of the same particle, i.e. sample impoverishment (Gilks and Berzuini, 2001). Also, the
number of particles can be adaptively chosen depending on the effective sample size (Fraccaro
et al., 2016a).

These ideas can be generalized to compute the smoothed posterior distribution (particle smoothing)
(Doucet and Johansen, 2008) as well as to estimate the parameters of the model, e.g. with the
EM algorithm or gradient-based methods (Kantas et al., 2015).

3.6 Summary and discussion

In this chapter we have introduced state-space models as an extension of LVMs that is suitable
for sequential data. The Markovian structure of SSMs introduces some conditional independence
properties between the latent variables that can be exploited during inference (filtering, smoothing
and prediction). We have presented the LGSSM as a basic example of a SSM, for which posterior
inference and missing data imputation can be performed in an exact way. Non-linear and non-
Gaussian SSMs can be used to model more complex sequences, but require approximate inference
procedures such as the EKF, the UKF or particle filters. We have used the ball tracking example
to illustrate many of the techniques presented throughout this chapter.

The main focus of this thesis is building non-linear models that can learn complex high-dimensional
sequential data distributions from large unlabelled datasets. The approximate inference methods
presented in Section 3.5.1 are however not powerful and/or scalable enough for such applications.
In the next chapter we will therefore introduce a general class of models that use SSMs with
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highly non-linear transitions and emissions parameterized by deep neural networks. These models
are broadly applicable and can be trained efficiently with the amortized Variational inference
ideas presented for VAEs in Section 2.4.



Chapter 4

Deep latent variable models for
sequential data

4.1 Motivation

The main focus of this thesis is unsupervised learning of complex probability distributions for
temporal data. We may be interested for example in learning a generative models for speech,
music, videos or text, or in using the data stored in electronic health records (EHRs) to learn
a patient representation given the information collected during many different visits. These
applications are characterized by:

1. Complex and high-dimensional temporal distributions. We consider high-dimensional se-
quences (e.g. a video), that require complex architectures that are able to:

- Model the high-dimensional observations at each time step.
- Capture long-term temporal dependencies in the data and memorize relevant informa-
tion.

- Model the uncertainty and variability in the data, and properly propagate them over
time.

These models will have an intractable log-likelihood, and we will need to resort to approxi-
mate inference and parameter learning.

2. Large-scale datasets. To learn such complex distributions that possibly depend on hundreds
of thousands of parameters we will use very large datasets. We then need scalable models
and training procedures.

We will solve these tasks by combining ideas from three classes of models closely related to each
other. First, as we have see in Chapter 2, we can use VAEs to model complex high dimensional
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dt−1 dt dt+1

xt−1 xt xt+1

(a) RNN for sequence modelling.

dt−1 dt dt+1

xt−1 xt xt+1

ut−1 ut ut+1

(b) RNN with input variables.

Figure 4.1: A graphical representation of a recurrent neural network. Diamond-shaped units denote
deterministic states.

observations by introducing latent variables and using neural networks to parameterize flexible
conditional distributions. VAEs allow to perform training using stochastic back-propagation
with inference networks in a very scalable way. Secondly, we can use recurrent neural networks
(RNNs), that will be introduced in Section 4.2, to model long-term dependencies in the data
through their parametric memory cells. Finally, we will show in Section 4.3 that the same ideas
that lead to develop VAEs as a deep LVM can be applied to construct deep SSMs, flexible and
scalable models for temporal data that offer a principled way to model uncertainty in the latent
representation.

As we will see in the rest of the Chapter, depending on the needs of each application these models
can be combined in many different ways. In Section 4.4 we will see that we can extend VAEs
to sequential data by using an RNN to define a time-varying prior for the same VAE repeated
at each time step. These models can then be further extended using a DSSM instead of the
VAEs, as shown in Section 4.5. In Section 4.6 we will then show how these ideas can be used to
learn disentangled representations by defining structured prior distribution. In some applications
that require higher memory capacity RNNs are not enough, and we need therefore to extend the
sequential models using external memory architectures as discussed in Section 4.7.

All these models use neural networks as their main building block, and we will therefore be able
to define very expressive and flexible architectures that can be trained in a similar way using
stochastic back-propagation and are simple to implement using existing deep learning libraries.
Due to their expressiveness it is not always easy to fully exploit the modelling power of these
architectures. In Section 4.8 we will then present several training tricks that have proven useful
in many applications.

4.2 Recurrent neural networks

Recurrent neural networks (RNN) are an extension of deep neural networks that can model
sequences of variable length. They are widely used in many areas involving temporal data, such
as for language modelling and machine translation (Graves, 2013; Sutskever et al., 2014).

For sequence modelling, RNNs assume the following factorization of the joint distribution over
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the sequence x1:T ,

pθ(x1:T ) =
T∏
t=1

pθ(xt|x1:t−1) , (4.1)

and assume that at time t all the relevant information coming from the past that is included in
x1:t−1 can be summarized by a deterministic latent variable dt. A graphical representation of
the model can be found in Figure 4.1a. Instead of defining pθ(xt|x1:t−1), in an RNN we define
pθ(xt|dt), as a distribution whose parameters depend on dt through some deep neural networks
parametrized by θ (e.g. a Gaussian distribution). The state dt evolves over time, and at each
time step incorporates the information from the previous element of the sequence, using the state
update equation dt = fθ(dt−1,xt−1). The function fθ is a differentiable non-linear transition
function that has to be powerful enough to capture the long-term dependencies in the data.
Common choices for fθ are memory cell units such as LSTMs (Hochreiter and Schmidhuber, 1997)
or GRU (Chung et al., 2014), that use learned gating mechanisms to store information that needs
to be available at future time steps. The initial state d0 of the RNN is typically learned or set to
0. The RNN is trained to predict the next output of the sequence given all the previous ones,
and gradients can be computed using a temporal extension to the back-propagation algorithm.

Notice that more in general RNNs can be used to model sequences x1:T that depend on some
inputs u1:T = [u1, . . . ,uT ], as illustrated in Figure 4.1b. In this case, the state update equation
is given by dt = fθ(dt−1,ut), i.e. dt is now used to capture at each time step the information
coming from the input ut. When doing sequence modelling, as illustrated in Figure 4.1a we are
implicitly considering the output at the previous time step as the input (ut = xt−1), which is
allowed as at time t the value of xt−1 is known (if we assume that there are no missing values).
In the following, even when considering sequence modelling we will use ut in the equations, as it
results in a more general as well as cleaner notation.

By comparing the graphical representation of SSMs and RNNs in Figures 3.1 and 4.1b respectively,
it is easy to see that an RNN can be interpreted as a special case of a SSM whose transition
distribution is a delta function that expresses a highly non-linear but deterministic relationship
between the RNN states. As the RNN units dt are deterministic, an RNN cannot model
uncertainty in the latent states but, on the other hand, the log-likelihood computation is tractable
as the integral in (3.2) is straightforward to solve when the transition probabilities are delta
functions.

4.3 Deep state-space models

In this section we introduce a broad class of non-linear SSMs with Gaussian transitions and
that, similarly to VAEs, use deep neural networks to define flexible transition and emission
distributions (Krishnan et al., 2015; Fraccaro et al., 2016c; Krishnan et al., 2017). For simplicity
in the exposition we will refer to them as deep state-space models (DSSM).

In a DSSM the transition distribution is a Gaussian, i.e. pθ(zt|zt−1,ut) = N (zt;µ
(p)
t ,v

(p)
t ), whose

mean and diagonal covariance matrix are a function of the previous latent state zt−1 and current
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input ut through two deep neural networks:

µ
(p)
t = NN

(p)
1 (zt−1,ut) , log v

(p)
t = NN

(p)
2 (zt−1,ut) . (4.2)

If scalability is not an issue, to make the model more general it is also possible to use a Gaussian
with full covariance matrix, see (Rezende et al., 2014) for a discussion on possible Gaussian
covariance parameterizations. As for VAEs, depending on the type of observations the emission
distribution pθ(xt|zt) is typically chosen to be either a Gaussian distribution (real-valued data)
or a Bernoulli distribution (binary data). The parameters of both distribution are computed with
deep neural networks with input zt.

The exact parametrization of transition and emission probabilities is problem dependent. For the
transitions, the simplest parameterization concatenates [zt−1,ut] and passes this vector through a
neural network that returns the mean and the diagonal covariance of the prior over zt. However,
if for example we are doing video modelling and ut = xt−1 is an image, it is typically convenient
to first pass ut through a (convolutional) neural network that does feature extractor, and then
concatenate the resulting vector with zt−1. Krishnan et al., (2017) use gated transition functions
that allow the model to learn to use linear transitions for some latent dimensions and non-linear
ones for others. The parameterization for the emission distribution highly depends on the type of
observations. Standard deep neural networks are a good default choice, but when dealing with
images it is often better to use convolutional architectures.

For notational simplicity we assume that the initial state z0 is a fixed and known vector (we
could otherwise learn it). The joint distribution is then given by

pθ(x1:T , z1:T |u1:T , z0) = pθ(x1:T |z1:T )pθ(z1:T |u1:T , z0)

=
T∏
t=1

pθ(xt|zt)pθ(zt|zt−1,ut) (4.3)

This distribution specifies the generative process of the data, therefore as in VAEs
pθ(x1:T , z1:T |u1:T , z0) is often referred to as generative model.

4.3.1 Amortized inference and parameter learning

Thanks to the deep neural networks used in their parameterization, DSSMs are very expressive
and can model a wide range of data distributions. However, as discussed in Section 3.5, due to the
non-linearities in the model exact inference is not possible. In Section 3.5.1 we discussed several
approximate inference techniques, that are however not scalable enough to large datasets and to
high dimensional spaces. The usage of neural networks to define non-linear state-space models
has also been previously considered (Valpola and Karhunen, 2002; Raiko and Tornio, 2009), that
approximate the posterior using a variational inference procedure that scales quadratically with
the dimensionality of the observations, and is therefore not suitable for the large-scale applications
we are interested in.

Below we will extend the amortized inference ideas used for VAEs in Section 2.4.2 to the temporal
setting, that will allow us to specify a powerful and scalable way to perform joint inference and
parameter learning in DSSMs.
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4.3.1.1 ELBO derivation

As done for the derivation of the ELBO in Section 2.3, we can introduce a variational approximation
conditioned on all quantities that are known at inference time, i.e. qφ(z1:T |x1:T ,u1:T , z0), and
compute the ELBO for a DSSM as:

log pθ(x1:T |u1:T , z0) = log

∫
pθ(x1:T , z1:T |u1:T , z0)dz1:T

= log

∫
pθ(x1:T , z1:T |u1:T , z0)

qφ(z1:T |x1:T ,u1:T , z0)
qφ(z1:T |x1:T ,u1:T , z0)dz1:T

= logEqφ(z1:T |x1:T ,u1:T ,z0)

[
pθ(x1:T , z1:T |u1:T , z0)

qφ(z1:T |x1:T ,u1:T , z0)

]
≥ Eqφ(z1:T |x1:T ,u1:T ,z0)

[
log

pθ(x1:T , z1:T |u1:T , z0)

qφ(z1:T |x1:T ,u1:T , z0)

]
= Fi(θ, φ) . (4.4)

We now have to define a parameterization for the variational distribution qφ(z1:T |x1:T ,u1:T , z0).
If all the sequences had the same length, we could in principle define a deep neural network that
outputs the mean and variances of the posterior approximation of the latent variables at all T
time steps. However, in many applications the sequences may have different lengths and, more
importantly, this parameterization does not exploit the dependencies induced by the temporal
structure of the problem. As shown below, we can instead define a variational approximation
inspired by the sequential factorization of the true posterior distribution.

Using the independence properties given by the Markovian structure of the model that were
discussed in Section 3.1, we can factorize the true intractable posterior distribution as

pθ(z1:T |x1:T ,u1:T , z0) =
T∏
t=1

pθ(zt|zt−1,x1:T ,u1:T )

=
T∏
t=1

pθ(zt|zt−1,xt:T ,ut:T ) . (4.5)

This equation implies that if we know zt−1, then the posterior over zt does not depend on past
inputs and outputs, but only on present and future ones. The state zt−1 in fact captures all the
relevant information coming from the past. We can then approximate the true posterior with a
structured variational approximation that mimics the factorization in (4.5):

qφ(z1:T |x1:T ,u1:T , z0) =

T∏
t=1

qφ(zt|zt−1,xt:T ,ut:T ) . (4.6)

This approximation to the smoothed posterior distribution shares the same parameters φ at each
time step, and this allows us to handle sequences of variable length. Similarly to VAEs, we can
make this inference procedure scalable by defining qφ(zt|zt−1,xt:T ,ut:T ) as an inference network
that returns the parameters of a Gaussian distribution. We will discuss the exact parameterization
in detail in Section 4.3.1.2.

Since both the joint distribution in (4.3) and the posterior approximation in (4.6) factorize over



46 Deep latent variable models for sequential data

ut−1 ut ut+1

at−1 at at+1

zt−1 zt zt+1

xt−1 xt xt+1

(a) Smoothing

ut−1 ut ut+1

at−1 at at+1

zt−1 zt zt+1

xt−1 xt xt+1

(b) Filtering

Figure 4.2: Inference networks for smoothing and filtering in a deep state-space model.

time we can decompose the ELBO as a sum over T terms:

Fi(θ, φ) = Eqφ(z1:T |x1:T ,u1:T ,z0)

[
log

pθ(x1:T , z1:T |u1:T , z0)

qφ(z1:T |x1:T ,u1:T , z0)

]
= Eqφ(z1:T |x1:T ,u1:T ,z0)

[
T∑
t=1

log
pθ(xt|zt)pθ(zt|zt−1,ut)
qφ(zt|zt−1,xt:T ,ut:T )

]

=

T∑
t=1

Eq∗φ(zt−1)

[
Eqφ(zt|zt−1,xt:T ,ut:T )

[
log pθ(xt|zt)

]
+

−KL
(
qφ(zt|zt−1,xt:T ,ut:T )

∥∥ pθ(zt|zt−1,ut))] , (4.7)

where q∗φ(zt−1) denotes the marginal distribution of zt−1 in the variational approximation to the
posterior qφ(z1:t−1|x1:T ,u1:T , z0), given by

q∗φ(zt−1) =

∫
qφ(z1:t−1|x1:T ,u1:T , z0) dz1:t−2 = Eq∗φ(zt−2)

[
qφ(zt−1|zt−2,xt−1:T ,ut−1:T )

]
.

Interestingly, we can interpret the ELBO in (4.7) as having a VAE at each time step with a
time-varying prior that depends on the previous state. Notice in particular the decomposition of
each term in the summation in a reconstruction and regularization term.

While the KL term can be computed analytically, the expectations in the ELBO are still intractable,
and we approximate them by sampling from the variational approximation and using Monte
Carlo integration as done for VAEs. To reduce the computational cost, it is common to use a
single sample at each time step. The parameters θ of the DSSM and φ of the inference network
can be learned jointly by maximizing the ELBO using stochastic gradient ascent, using the
reparameterization trick to reduce the variance of the gradients. Recall in particular that this
scalable gradient-based optimization is only possible since all the distributions involved in the
ELBO computation are parameterized by differentiable deep neural networks.
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4.3.1.2 Parameterization of the inference network

In this section we will introduce the parameterization for qφ(zt|zt−1,xt:T ,ut:T ) used in (Fraccaro
et al., 2016c, Chapter 5), see (Archer et al., 2015; Krishnan et al., 2015; Gao et al., 2016; Krishnan
et al., 2017) for alternative but related ones.

When deciding the structure of qφ(zt|zt−1,xt:T ,ut:T ), the main challenge to solve is the dependence
of this distribution on a variable number of inputs and outputs at each time step t, i.e. xt:T
and ut:T . We approximate this dependence of zt on future inputs and outputs in the inference
network by introducing an auxiliary deterministic state at at each time step that belongs to an
RNN running backwards in time. We initialize the hidden state of the backward-recursive RNN
as aT+1 = 0, and recursively compute

at = gφ(at+1, [ut,xt]) , (4.8)

using therefore as input to the RNN the concatenation of the present input and output. The
function gφ can be for example an LSTM or GRU cell. The variational approximation then
becomes qφ(zt|zt−1,xt:T ,ut:T ) = qφ(zt|zt−1,at), see Figure 4.2a for a graphical representation.
We notice that the state zt directly depends on zt−1 and at. The direct dependence of zt on zt−1
in the variational approximation is used to encode the information coming from the past. The
dependence of zt on the present and future inputs and outputs is then encoded in at, as in (4.8)
the concatenation [xt,ut] contains the information coming from the present, while the hidden
state at+1 encodes the information coming from the future. Similarly to a VAE, we assume that
qφ(zt|zt−1,at) is a Gaussian distribution whose mean and log-variance are parameterized as

µ
(q)
t = NN

(q)
1 (zt−1,at) , log v

(q)
t = NN

(q)
2 (zt−1,at) . (4.9)

Instead of smoothing, we can do filtering simply by replacing the RNN running backwards in
time with a neural network that receives as input the present input and output information,
i.e. at = NN(a)(xt,ut), see Figure 4.2b.

4.3.2 Tightening the bound with particle filters

In Section 2.5.1 we have seen that IWAEs extend VAEs by using importance sampling to define a
tighter bound to the log-likelihood than the ELB0. The IWAE bound can be applied of course
also to DSSMs, but as we will see below we can do even better than that for problems with
a sequential structure. In Section 3.5.1.4 we have presented particle filters as an extension of
importance sampling to the temporal setting in which we use a resampling step to make sure
that the particles are concentrated in regions of high posterior density. For sequential models like
DSSM we can then improve the tightness of the bound by extending IWAEs ideas using particle
filters instead of importance sampling. This method was recently introduced independently by
three different research groups (Maddison et al., 2017a; Le et al., 2018; Naesseth et al., 2018).

In (3.20) we have seen that as a byproduct of particle filtering we obtain an estimator to the
marginal likelihood:

p̂θ(x1:T |u1:T ) =

T∏
t=1

1

R

R∑
r=1

w(z
(r)
1:t ) . (4.10)
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As this quantity is unbiased, we can calculate pθ(x1:T |u1:T ) by taking the expectation of this
estimator with respect to the importance distribution qφ(z1:T |x1:T ,u1:T , z0). From this, the new
bound can be obtained following the derivation of the ELBO in Section 2.3. Notice in particular
that the form of the unnormalized weights in (4.10), w(z1:t) = pθ(x1:t,z1:t|u1:t)

q(z1:t|x1:t,u1:t)
, is exactly as the

term inside the log in (4.4), and this bound reduces therefore to the standard ELBO of a DSSM
if we are only considering one particle. The importance distribution qφ(z1:T |x1:T ,u1:T , z0), that
plays the same role as the variational approximation in this case, can be defined recursively with
an inference network qφ(zt|zt−1,xt,ut) parameterized by deep neural networks, that approximates
the optimal importance distribution pθ(zt|zt−1,xt,ut) in (3.19). We can then learn the parameters
φ of this distribution together with the parameters θ of the DSSM using stochastic gradient
ascent, as discussed in Section 4.3.1.

We have seen in Section 3.5.1.4 that it is convenient to only perform the resampling step when
the effective sample size (ESS) is lower than a certain threshold. The ESS however is calculated
using the weights that depend in turn on the parameters θ and φ. This implies that when we
compute gradients with respect to these parameters, we will have gradient terms that come from
the resampling step. Empirically (Maddison et al., 2017a; Le et al., 2018; Naesseth et al., 2018)
have shown that these gradients have a very high variance, and propose to discard them during
training. This introduces small biases in the gradient estimation, but despite this, it allows to
obtain convincing improvements in terms of final log-likelihood estimation compared to using
the ELBO or the IWAE bound (obtained using the method presented in this section with no
resampling step).

Instead of using sequential Monte Carlo methods (particle filters) to define a tighter bound
than the ELBO, Gu et al., (2015) use them to directly approximate the log-likelihood of a
SSM, and learn the importance distribution by minimizing the KL diverge from the posterior’s
sample-based approximation to the importance distribution (i.e. the opposite KL than the one
used in variational methods).

4.4 Sequential extensions of variational auto-encoders

4.4.1 The VAE-RNN model

The DSSM model introduced in Section 4.3 can be seen as having a VAE at each time step
with a time-varying prior, so that each latent variable zt directly depends on the previous one.
An alternative way to introduce correlations among latent variables is by expanding the model
hierarchically with a new set of temporally correlated deterministic latent variables, the states
of a recurrent neural network (RNN). The VAE-RNN model uses the same VAE at each time
step, but with a prior for state zt that depends on the information on the past of the sequence
captured in the RNN by the state dt, as illustrated in Figure 4.3a. The generative model of the
VAE-RNN is described by the joint distribution of the outputs and unobserved variables given
the inputs and initial state d0 of the RNN, i.e.

pθ(x1:T , z1:T ,d1:T |u1:T ,d0) = pθ(x1:T |z1:T )pθ(z1:T |d1:T )pθ(d1:T |u1:T ,d0)
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(a) Generative model pθ
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(b) Inference network qφ

Figure 4.3: The VAE-RNN model.

=
T∏
t=1

pθ(xt|zt)pθ(zt|dt)pθ(dt|dt−1,ut) . (4.11)

where d1:T can be computed by repeatedly applying the state update equation of the RNN given
the inputs, dt = fθ(dt−1,ut). We denote as d̃1:T the value assumed by d1:T after repeatedly
applying the RNN transitions fθ. The deterministic transitions can then be written from a
probabilistic point of view using delta functions centered at d̃t, i.e. pθ(dt|dt−1,ut) = δ(dt − d̃t).
For simplicity, we assume that the initial state of the RNN is set to 0 (we could otherwise learn
it). pθ(zt|dt) is typically a Gaussian distribution, whose mean and variance depend on dt through
deep networks. Notice in particular that given d1:T the VAE states z1:T are independent, i.e.

pθ(z1:T |d1:T ) =
T∏
t=1

pθ(zt|dt) . (4.12)

We can optimize the parameters of the model by extending to the sequential setting the ELBO
of the VAE presented in Section 2.4.3, as done for the DSSM in Section 4.3.1. Using Jensen’s
inequality we can obtain a lower bound for the evidence log pθ(x1:T |u1:T ,d0):

log pθ(x1:T |u1:T ,d0) = log

∫
pθ(x1:T , z1:T ,d1:T |u1:T ,d0)dz1:T dd1:T

= log

∫
pθ(x1:T , z1:T ,d1:T |u1:T ,d0)

qφ(z1:T ,d1:T |x1:T ,u1:T ,d0)
qφ(z1:T ,d1:T |x1:T ,u1:T ,d0)dz1:T dd1:T

= logEqφ(z1:T ,d1:T |x1:T ,u1:T ,d0)

[
pθ(x1:T , z1:T ,d1:T |u1:T ,d0)

qφ(z1:T ,d1:T |x1:T ,u1:T ,d0)

]
≥ Eqφ(z1:T ,d1:T |x1:T ,u1:T ,d0)

[
log

pθ(x1:T , z1:T ,d1:T |u1:T ,d0)

qφ(z1:T ,d1:T |x1:T ,u1:T ,d0)

]
= Fi(θ, φ) ,

(4.13)

where we have introduced a variational approximation qφ(z1:T ,d1:T |x1:T ,u1:T ,d0) over all the
latent variables of the model, conditioned on the data and the inputs.

Due to the deterministic nature of the RNN, the true posterior over d1:T coincides with its prior.
Furthermore, using the d-separation properties (Geiger et al., 1990) of the graphical model in



50 Deep latent variable models for sequential data

Figure 4.3a it is easy to show that, conditioned on d1:T , the latent variables of the VAEs at
each time step are independent. The true posterior distribution pθ(z1:T ,d1:T |x1:T ,u1:T ,d0) then
factorizes as

pθ(z1:T ,d1:T |x1:T ,u1:T ,d0) = pθ(z1:T |x1:T ,d1:T )pθ(d1:T |u1:T ,d0)

=

(
T∏
t=1

pθ(zt|xt,dt)
)
pθ(d1:T |u1:T ,d0) . (4.14)

The variational distribution is an approximation to the true posterior distribution, so we define it
to mimic the factorization in (4.14):

qφ(z1:T ,d1:T |x1:T ,u1:T ,d0) = qφ(z1:T |x1:T ,d1:T )pθ(d1:T |u1:T ,d0)

=

(
T∏
t=1

qφ(zt|xt,dt)
)
pθ(d1:T |u1:T ,d0) . (4.15)

In (4.15) we have introduced the VAE inference network qφ(zt|xt,dt) that, unlike the inference
network used in the static case (Section 2.4.2), now also depends on the RNN state dt. A graphical
representation can be found in Figure 4.3b. Similarly to the inference network introduced in
Section 2.4.2, we can define qφ(zt|xt,dt) as a Gaussian distribution whose mean and diagonal
covariance depend on the concatenation of xt and dt through a deep network parameterized by φ.
Using (4.11) and (4.15) in (4.13), the prior pθ(d1:T |u1:T ,d0) cancels out, and the ELBO becomes

Fi(θ, φ) = Eqφ(z1:T ,d1:T |x1:T ,u1:T ,d0)

[
log

pθ(x1:T |z1:T )pθ(z1:T |d1:T )

qφ(z1:T |x1:T ,d1:T )

]
= E

qφ(z1:T |x1:T ,d̃1:T )

[
log

pθ(x1:T |z1:T )pθ(z1:T |d̃1:T )

qφ(z1:T |x1:T , d̃1:T )

]

=
T∑
t=1

E
qφ(zt|xt,d̃t)

[
log

pθ(xt|zt)pθ(zt|d̃t)
qφ(zt|xt, d̃t)

]

=
T∑
t=1

(
E
qφ(zt|xt,d̃t)

[log pθ(xt|zt)]−KL
[
qφ(zt|xt, d̃t)||pθ(zt|d̃t)

])
After computing d̃1:T , we can then rewrite the ELBO as the one obtained if we had T independent
data points. As RNNs are differentiable the gradients needed to jointly learn the parameters
of the model and the inference network can still be computed using back-propagation and the
reparameterization trick as for the VAE in Section 2.4.3. The VAE-RNN model will be used as a
baseline when modelling simple videos of moving objects in Section 6.5.

4.4.2 Variational recurrent neural networks

In the previous section we have shown that RNNs can be used to extend VAEs to handle sequential
data by defining a hierarchical time-varying prior. The VAE-RNN model can however be also
understood the other way around, as using VAEs to extend RNNs to handle more complex data
distribution. Standard RNNs typically use in fact Gaussian output distributions (or mixture of
Gaussians), and as such they may struggle with highly multimodal data distributions. Adding
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a VAE to the output of the RNN we can define a very flexible architecture that is suitable to
model a wide range of complex data distributions. The model presented in this section is better
understood using this latter interpretation of the VAE-RNN model.

With respect to the standard RNN architecture in Figure 4.1b, we see that in the VAE-RNN
model of Figure 4.3a there is no direct dependency from the deterministic hidden states of the
RNN dt to the outputs xt. A natural first extension to the VAE-RNN model is therefore the
addition of this missing connection, so that the likelihood of the model becomes pθ(xt|zt,dt)
instead of pθ(xt|zt). This seemingly minor change is very relevant from the modelling point of
view: if xt does not directly depend on dt, zt has to encode all the relevant information on the
past of the sequence that is captured by dt. If xt is connected to both dt and zt on the other
hand, the model can use the two sets of latent variables to separately encode in each of them the
different aspects of the data they are better at modelling. In particular, the deterministic states
dt can be used to capture the overall structure of the data using the flexibility and the power of
RNN architectures, while the stochastic latent variables zt are well suited to model the variability
in the data. Notice that typically the dimensionality of dt needs to be much higher that the
one of zt (e.g. 1000 vs 100 dimensions). Being able to capture both aspects is fundamental for
example when modelling speech. All speech waveforms share a common structure that follows
from the rules of spoken languages, and contain very complex long-term dependencies across time
steps. Every person has however its own way to speak, meaning that there is a lot of variability
in how different people - and even in how the same person but under different circumstances -
pronounce the same sentence. While RNNs are ideal to model the high level structure of the
waveforms, as its hidden states are inherently deterministic they would struggle to also model
at the same time all the nuances and variations across different speakers in the data. For this,
extending the deterministic state dt with a stochastic component zt that is able to naturally
encode the variability in the data is fundamental.

The speech modelling example can be also used to justify another possible extension to the
VAE-RNN model. As we said, the stochastic latent variables zt model the variability in the data,
for example due to the particular vocal characteristics of the speaker. For a given sequence it
is then reasonable to assume that the variability is consistent over time, i.e. that each latent
variable zt is directly affected by the value of z1:t−1. This is however not the case in the generative
model of the VAE-RNN in Figure 4.3a, where to obtain the prior pθ(zt|dt) we only need to
compute the RNN states d1:t given the inputs, and not any of the previous states z1:t−1. Below
we will then add an arrow from zt−1 to dt, so that zt will depend on zt−1 indirectly through
dt = fθ(dt−1, zt−1,ut).

The variational recurrent neural network (VRNN) (Chung et al., 2015) can be seen as an extension
of the VAE-RNN model where we add the additional dependencies of xt on dt and of dt on zt−1
as discussed above and depicted in Figure 4.4a.1 The generative model is then defined by the
joint probability

pθ(x1:T , z1:T ,d1:T |u1:T ,d0, z0) = pθ(x1:T |z1:T ,d1:T )pθ(z1:T ,d1:T |u1:T ,d0, z0)

=

T∏
t=1

pθ(xt|zt,dt)pθ(zt|dt)pθ(dt|zt−1,dt−1,ut) . (4.16)

1To be consistent with the notation used throughout the whole thesis, we have changed the name of some
variables with respect to the original paper of Chung et al., (2015). Also, we have generalized the model to have
inputs ut instead of only presenting the special case ut = xt−1 as in the original paper.
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Figure 4.4: Variational recurrent neural network (VRNN). The blue arrows are the additional dependen-
cies introduced with respect to the VAE-RNN model of Figure 4.3.

Similarly to the VAE-RNN model, to take into account the fact that the RNN states are
deterministic we define pθ(dt|zt−1,dt−1,ut) as a delta function whose center is computed with
the recursion dt = fθ(dt−1, zt−1,ut).

The posterior approximation chosen in (Chung et al., 2015) can be written as

qφ(z1:T ,d1:T |x1:T ,u1:T ,d0, z0) =
T∏
t=1

qφ(zt|xt,dt)pθ(dt|zt−1,dt−1,ut) . (4.17)

Recalling that from Bayes’ rule we know that the true posterior will be proportional to the joint
distribution, i.e. pθ(z1:T ,d1:T |x1:T ,u1:T ,d0, z0) ∝ pθ(x1:T , z1:T ,d1:T |u1:T ,d0, z0), we see that in
the VRNN we introduce the inference network qφ(zt|xt,dt) to approximate the unnormalized
factor pθ(xt|zt,dt)pθ(zt|dt) in (4.16). The specific form of qφ(zt|xt,dt) is typically chosen as
in the VAE-RNN as a Gaussian whose mean and variance depend on xt and dt through deep
networks. Now that we have defined both the joint and the variational approximation, we can
compute the ELBO as

Fi(θ, φ) = Eqφ(z1:T ,d1:T |x1:T ,u1:T ,d0,z0)

[
log

pθ(x1:T , z1:T ,d1:T |u1:T ,d0, z0)

qφ(z1:T ,d1:T |x1:T ,u1:T ,d0, z0)

]
= Eqφ(z1:T ,d1:T |x1:T ,u1:T ,d0,z0)

[
T∑
t=1

log
pθ(xt|zt,dt)pθ(zt|dt))

qφ(zt|xt,dt)

]
.

Unlike the VAE-RNN model, where samples from the variational approximation could be
computed in parallel given the deterministic units, due to the connection from zt−1 to dt
in the VRNN the sample at time t will depend on the past samples as well. Samples from
qφ(z1:T ,d1:T |x1:T ,u1:T ,d0, z0) can be easily obtained sequentially by ancestral sampling as illus-
trated in Algorithm 1. Tighter bounds for the VRNN can be obtained using particles filters as
discussed in Section 4.3.2, see (Maddison et al., 2017a) for an example of application. We will
use the VRNN as a baseline in the speech modelling experiments of Section 5.4.

We finally notice that the VRNN can be seen as a DSSM in which the state st is split in a
stochastic and in a deterministic component, i.e. st = [zt,dt]. A graphical representation can be
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Algorithm 1 Sampling procedure for the Gaussian posterior approximation
qφ(z1:T ,d1:T |x1:T ,u1:T ,d0, z0) of a VRNN.
1: inputs: u1:T and x1:T

2: initialize d0 and z0
3: for t = 1 to T do
4: dt = fθ(dt−1, zt−1,ut) % RNN recursion
5: µ

(q)
t = NN

(q)
1 (dt,xt) % Posterior mean

6: log v
(q)
t = NN

(q)
2 (dt,xt) % Posterior log-variance

7: zt ∼ N (zt;µ
(q)
t ,v

(q)
t ) % Posterior sample

8: end for

dt−1 zt−1

st−1

dt zt

st

dt+1 zt+1

st+1

xt−1 xt xt+1

ut−1 ut ut+1

Figure 4.5: VRNN in state-space form.

found in Figure 4.5. The transition distribution is assumed to factorize in the following way:

pθ(st|st−1,ut) = pθ(zt,dt|zt−1,dt−1,ut) = pθ(zt|dt)pθ(dt| zt−1i ,dt−1i︸ ︷︷ ︸
st−1
i

,ut) ,

so that the dependence on the past and inputs is only captured by the deterministic component,
that is then used to condition the stochastic one. The emission distribution depends on both
components, i.e. pθ(xt|st) = pθ(xt|zt,dt), and this leads to a joint distribution that coincides
with (4.16):

pθ(x1:T , s1:T |s1:T , s0) =
T∏
t=1

pθ(xt|st)pθ(st|st−1,ut)

=
T∏
t=1

pθ(xt|zt,dt)pθ(zt|dt)pθ(dt|zt−1,dt−1,ut) .

In a VRNN, the state zt depends on zt−1 indirectly through the deterministic RNN state dt. The
RNN states represent therefore a deterministic bottleneck through which all the stochasticity has
to pass, making it difficult for the VRNN to properly model how the uncertainty in the latent
variables propagates across time steps. As shown in the next section, this can be done by making
zt directly depend on zt−1 as in a DSSM, which is also a more natural way to model temporal
correlations among latent states. While this allows us to define a more expressive model than
the VRNN, this dependency makes inference harder, as we now have to perform filtering and
smoothing over a chain of latent variables as in Section 4.3.1.



54 Deep latent variable models for sequential data

dt−1 dt dt+1

zt−1 zt zt+1

xt−1 xt xt+1

ut−1 ut ut+1

(a) Generative model pθ

dt−1 dt dt+1

at−1 at at+1

zt−1 zt zt+1

xt−1 xt xt+1
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Figure 4.6: A stochastic recurrent neural network. The red arrows denote the different dependencies
introduced with respect to the VRNN model of Figure 4.4.

4.5 Stochastic recurrent neural networks

Stochastic recurrent neural networks are introduced in detail in the research paper in Chapter 5.
Here we will only briefly summarize the main ideas behind this model, mostly focusing on how it
relates to the other models presented in this chapter.

Stochastic recurrent neural networks (SRNN) (Fraccaro et al., 2016c) are formed by staking an
RNN and a DSSM, see Figure 4.6a for a graphical representation. Instead of the arrow from
zt−1 to dt as in the VRNN model of Figure 4.4a, in a SRNN zt−1 is directly connected to zt.
SRNNs combine the advantages of RNNs and DSSMs in a principled way: the RNN can be used
to capture complex long-term dependencies in its deterministic states, while the DSSM can model
uncertainty in the latent representation through the stochastic states. The generative model of
the SRNN model is given by

pθ(x1:T , z1:T ,d1:T |u1:T ,d0, z0) = pθ(x1:T |z1:T ,d1:T )pθ(z1:T |d1:T , z0)pθ(d1:T |u1:T ,d0)

=
T∏
t=1

pθ(xt|zt,dt)pθ(zt|zt−1,dt)pθ(dt|dt−1,ut) . (4.18)

We notice in particular that the transition density of the DSSM now depends on the deterministic
states of the RNN, i.e. pθ(zt|zt−1,dt) = N (zt;µ

(p)
t ,v

(p)
t ) with

µ
(p)
t = NN

(p)
1 (zt−1,dt) , log v

(p)
t = NN

(p)
2 (zt−1,dt) . (4.19)

The DSSM can therefore utilize the long-term information that is captured by the RNN. Further-
more, in the SRNN the RNN transitions pθ(dt|dt−1,ut) are entirely deterministic over time since
they no longer depend on the noisy samples of zt−1 as in the VRNN.

The clear separation between deterministic and stochastic states in a SRNN allows us to perform
inference and parameter learning extending the ideas presented in Section 4.3.1 for DSSMs. As the
states d1:T are deterministic and do not depend on the stochastic states their posterior coincides
with their prior, and we can therefore write the posterior distribution over the latent variables of
the SRNN as:

pθ(z1:T ,d1:T |x1:T ,u1:T , z0,d0) = pθ(z1:T |d1:T ,x1:T , z0)pθ(d1:T |u1:T ,d0) . (4.20)
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In (4.20) the first term represents the intractable posterior over the states of the DSSM, while
the second term represents the prior RNN transition probabilities. A similar factorization was
used in (4.14) for the VAE-RNN model. We assume that the variational approximation factorizes
similarly to the posterior in (4.20), i.e.

qφ(z1:T ,d1:T |x1:T ,u1:T , z0,d0) = qφ(z1:T |d1:T ,x1:T , z0)pθ(d1:T |u1:T ,d0) . (4.21)

During inference, the states d1:T at all time steps can be easily computed given only the inputs
of the model with the RNN recursions that define pθ(dt|dt−1,ut). Once these are known, the
SRNN can be seen as a DSSM whose inputs are the RNN states, and we can therefore use the
same amortized inference procedure as for the DSSM in Section 4.3.1. In particular, we can use
the same inference networks for filtering and smoothing, that were justified using the conditional
independence properties of the true posterior distribution given by the Markovian structure of the
model. In Figure 4.6b we show the backward-recursive inference network used for smoothing, that
allows us to take also into account information coming from the future inputs and outputs when
computing the approximate posterior. As for the VRNN, also for the SRNN we can obtain a
tighter lower bound using particle filters (Section 4.3.2). As shown in Section 5.4, SRNNs achieve
state of the art performances in speech modelling (outperforming VRNNs by a large margin),
and perform comparably to related methods for polyphonic music modelling.

A number of works have recently built on the SRNN model presented in this section. (Goyal
et al., 2017) extends the VRNN model of Section 4.4.2 with SRNN’s backwards-recurring RNN,
adding an auxiliary term in the ELBO that forces the latent variables to encode information
about the future. This idea if further developed in the Variational Bi-LSTM model of (Shabanian
et al., 2017). Finally, (Liu et al., 2017) builds an architecture similar to the SRNN, using however
an Hidden Markov Model with discrete random variables instead of a DSSM, that is trained using
a continuous relaxation of the discrete variables defined with the Gumbel-Softmax distribution
(Maddison et al., 2017b; Jang et al., 2016).

Apart from the the models already presented in this chapter, the extension of RNNs with stochastic
units has been also explored in several other works. STORN (Bayer and Osendorfer, 2014) and
DRAW (Gregor et al., 2015) use Gaussian stochastic units independent between time steps as
input to the deterministic units of an RNN. (Gan et al., 2015) uses a recurrent model with discrete
latent units that is optimized using the NVIL algorithm (Mnih and Gregor, 2014). (Zheng et al.,
2017) defines a combination of SSMs and LSTMs that is trained with a stochastic EM approach,
where the expectation in E-step is approximated using samples from sequential Monte Carlo.

4.6 Learning disentangled representations with structured priors

All the models presented so far in this chapter are very flexible architectures that can be used to
model a wide range of data distributions. However, to be able to do so they are often defined
with deep neural networks with a very high number of parameters, and this implies that (1)
they require a lot of data and (2) it is difficult to interpret what they are learning. As we will
show below, we can often counteract this data inefficiency and black-box nature by carefully
inserting some structure in the model, e.g. using domain knowledge on the task at hand, that
helps the model to learn disentangled representations. Each latent variable will then represent a
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Figure 4.7: A Kalman variational auto-encoder. Solid arrows represent the generative model while
dashed arrows represent the VAE inference network.

meaningful and interpretable concept, and training will often require less data as this additional
prior knowledge encoded in the structure of the model will simplify the learning task.

In Section 4.6.1 we will focus on unsupervised learning of disentangled visual and dynamics
representations in the sequential setting by carefully designing a model that combines LGSSMs
and VAEs. We will then briefly show in Section 4.6.2 that we can use probabilistic graphical
models to introduce structure to the model. Recent works have also focused on using similar
ideas in the static setting, e.g. in (Higgins et al., 2017a; Deng et al., 2017). In particular, Higgins
et al., (2017a) learn to disentangle representations in a standard VAE by modifying the ELBO
rather than designing the model with some structure in it.

4.6.1 Kalman variational auto-encoders

Kalman variational auto-encoders are introduced in detail in the research paper in Chapter 6.
Here we will only briefly summarize the main ideas behind this model, mostly focusing on how it
relates to the other models presented in this chapter.

In Section 3.4 we have considered the experiment of tracking a ball given noisy observations of its
(x, y) coordinates. We now assume that instead of these 2-dimensional observations we observe
at each time step a 32x32 image xt of the ball flying in vacuum, as illustrated in Figure 3.6.
We then want to model videos formed by 1024-dimensional frames. In Section 3.4 we have seen
that a LGSSM is ideal to represent the 2-dimensional trajectory of the ball, as we can derive its
parameterization from Newton’s equations of motion. However, to model the high-dimensional
images we need a non-linear emission distribution. Can we exploit the prior knowledge on
the physics of flying ball that is encoded in the LGSSM while dealing with high-dimensional
observations? As we will see below, we can do this by constructing a model that disentangles
visual and dynamic information.

If we compress the high-dimensional information in the image into a 2-dimensional latent variable
representing the position of the ball, we can model the trajectories in this learned manifold with
a LGSSM and perform filtering, smoothing and missing data imputation as described in Section
3.4. This is the key intuition behind a Kalman variational auto-encoder (KVAE) (Fraccaro et al.,
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2017), that factorizes the latent structure at each time step in a visual and dynamic component
as illustrated in Figure 4.7. Similarly to the VAE-RNN model of Section 4.4.1, a KVAE has a
VAE at each time steps, that encodes the high-dimensional observations into a low dimensional
latent state at which learns to capture the relevant visual information in the observations. The
prior over these latent states is time-varying, and parameterized with a LGSSM with states zt
that models the temporal dynamics of the system. As shown below, we can learn jointly the
parameters of both the VAE and the LGSSM. Notice that by working in this lower dimensional
manifold instead of in image-space, we also avoid the computational issues due to the cubic
scaling of the Kalman filter with the output dimensionality discussed in Section 3.4.1.

In the ball tracking experiment we set for example at ∈ R2 and zt ∈ R4. By constraining the
dimensionality of these vectors we force the model to learn to use at to model the noisy position
of the ball in the frame (in a space that is possibly rotated and scaled w.r.t the (x, y) plane in
Figure 3.2), and zt to model the position and velocity of the ball in this new space similarly to
the example in Section 3.4. While we do not explicitly tell the model to use these latent variables
in this way, the model will learn to do it as it is the only way to maximize the ELBO introduced
below in (4.27) with such low-dimensional latent states. We could of course also use much higher
dimensional latent spaces, but training the KVAE would become more difficult, computationally
expensive and require more data.

More in detail, we define the LGSSM with parameters γ = [γ1, .., γT ] as in Section 3.4:

pγ(a1:T , z1:T |u1:T ) = pγ(a1:T |z1:T ) pγ(z1:T |u1:T )

=
T∏
t=1

pγt(at|zt) · p(z1)
T∏
t=2

pγt(zt|zt−1,ut) , (4.22)

where the transition and emission distributions are respectively

pγt(zt|zt−1,ut) = N (zt; Atzt−1 + Btut,Qt) (4.23)
pγt(at|zt) = N (at; Ctzt,Rt) . (4.24)

Given the latent outputs of the LGSSM we model the observations with the VAE decoder pθ(xt|at),
i.e. pθ(x1:T |a1:T ) =

∏T
t=1 pθ(xt|at). The joint distribution of the KVAE is the product of these

distributions:

p(x1:T ,a1:T , z1:T |u1:T ) = pθ(x1:T |a1:T ) pγ(a1:T |z1:T ) pγ(z1:T |u1:T ) .

We can learn the parameters of the VAE and the LGSSM by introducing a variational ap-
proximation q(a1:T , z1:T |x1:T ,u1:T ) and maximizing the ELBO obtained as usual using Jensen’s
inequality:

log p(x1:T |u1:T ) = log

∫
p(x1:T ,a1:T , z1:T |u1:T )

≥ Eq(a1:T ,z1:T |x1:T ,u1:T )

[
log

pθ(x1:T |a1:T )pγ(a1:T |z1:T )pγ(z1:T |u1:T )

q(a1:T , z1:T |x1:T ,u1:T )

]
= F(θ, γ, φ) . (4.25)

We choose a variational approximation that allows us to exploit the knowledge we have on the
exact posterior of a LGSSM. If we knew the latent variables of the VAE a1:T , we could compute
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the conditional posterior over the LGSSM states pγ(z1:T |a1:T ,u1:T ) with the Kalman filtering and
smoothing algorithm introduced in Section 3.4.1. We then factorize the variational distribution as

q(a1:T , z1:T |x1:T ,u1:T ) = qφ(a1:T |x1:T ) pγ(z1:T |a1:T ,u1:T )

=
T∏
t=1

qφ(at|xt) pγ(z1:T |a1:T ,u1:T ) , (4.26)

where qφ(at|xt) is the VAE inference network. In this way we can easily get samples form
the posterior approximation by first sampling a

(s)
1:T from the VAE inference network given the

observations x1:T , and then sampling from the exact posterior pγ(z1:T |a(s)
1:T ,u1:T ). With this

choice of the joint and variational distributions the ELBO in (4.25) becomes

F(θ, γ, φ) = Eqφ(a1:T |x1:T )

[
log

pθ(x1:T |a1:T )

qφ(a1:T |x1:T )
+

+Epγ(z1:T |a1:T ,u1:T )

[
log

pγ(a1:T |z1:T )pγ(z1:T |u1:T )

pγ(z1:T |a1:T ,u1:T )

]]
. (4.27)

We can perform end-to-end training of this model and learn the parameters θ and φ of the VAE and
γ of the LGSSM by jointly maximizing the ELBO. The intractable expectations can be computed
with Monte Carlo integration (even with a single sample) and we use the reparameterization trick
to obtain low-variance gradients.

Often the dynamics of the objects are non-linear, e.g. when the ball hits a wall, and the LGSSM
assumptions no longer hold. In Section 6.3.3 we will show that we can deal with these situations
by non-linearly changing the parameters γt of the LGSSM over time as a function of the latent
encodings a1:t−1 up to time t− 1. Importantly, this allows us to preserve the linear dependency
between consecutive states in the LGSSM, and still be able to use the Kalman filtering and
smoothing algorithms for posterior inference and missing data imputation. Results on using the
KVAE to model the (non-linear) dynamics of the moving ball can be found in Section 6.5.

A recent related work can be found in (Li and Mandt, 2018), that shows how a careful model
design can be used to also disentangle a static component in the sequence by extending the model
with a time-invariant latent variable. This allows for example to deal with sequences of objects
with different shapes and colors.

4.6.2 Structured priors with probabilistic graphical models

Probabilistic graphical models (PGMs) are a very general framework to represent relationships
among random variables by defining joint probability distributions as a product of factors each of
which only depends on a subset of the variables, see (Bishop, 2006) for a comprehensive review
on the topic. Both latent variable models and state-space models can be seen as special cases of
PGMs.

As shown in (Johnson et al., 2016; Lin et al., 2018) we can combine VAEs with PGMs in which
we express prior knowledge on the application at hand, as needed when learning disentangled
representation and interpretable models. The PGM is used to define a hierarchical prior dis-
tribution that helps to extract useful structure from the data (unlike the Gaussian prior of a
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VAE). To approximate the intractable posterior over the latent variables of the PGM, we could in
principle follow a black-box approach using inference networks as for most of the models presented
in this thesis. However, (Johnson et al., 2016; Lin et al., 2018) argue that better posterior
approximations can be defined by exploiting the structure of the PGM and existing approximate
inference procedures for it, and combine therefore amortized inference using inference networks
and Variational Message Passing (Winn and Bishop, 2005). The forward-backward procedure
of the Kalman smoother is a message passing algorithm, and the KVAE presented in 4.6.1 can
therefore also be seen as a special case of this framework.

4.7 Sequential models with external memory architectures

Some applications require models with a particularly high-memory capacity. In reinforcement
learning (RL) for example, we may want to build agents that can remember a large number
of past experiences and use this knowledge to better plan the sequence of actions needed to
solve new tasks. In this cases, using RNNs with memory cells such as LSTMs (Hochreiter and
Schmidhuber, 1997) or GRUs (Chung et al., 2014) as in VRNNs and SRNNs is typically not
enough. To be able to increase the memory capacity in these architectures we would need in fact
to largely increase the dimensionality of the RNN states dt. However, the scaling of the number
of parameters of the RNN is quadratic with respect to the dimensionality of dt, and this would
make learning impracticable both in terms of computational requirements and in terms of the
amount of data needed to learn these models. In the static setting, a recent trend in the deep
learning community to deal with high memory capacities is to design data structures that work as
external memory architectures and are easy to integrate with neural networks (Graves et al., 2014;
Sukhbaatar et al., 2015; Miller et al., 2016; Graves et al., 2016; Li et al., 2016; Bornschein et al.,
2017). These ideas have been extended to the sequential setting by Gemici et al., (2017), that
learn to write/read from external memories using differentiable memory addressing mechanisms.

In Section 4.7.1 we present a generative temporal model for RL agents walking in partially-
observed 3D environments, which combines a structured SSM prior similarly to the KVAE of
Section 4.6.1 and a non-parametric memory used to store what the agent sees in the environment
at each time step.

4.7.1 Generative temporal models with spatial memory

Generative temporal models with spatial memory are introduced in detail in the research paper in
Chapter 7. Here we will only briefly summarize the main ideas behind this model, mostly focusing
on how it relates to the other models presented in this chapter.

Imagine to be training an RL agent to walk and explore a large 3D environment for hundreds of
steps and successively predict future observations given a specific set of actions that bring it to a
previously visited location. The input ut to the model at each time step is an action that makes
the agent move/rotate in any direction, while the output xt is what the agent is observing. This
task would be simple to solve if the agent could remember at each time step both its location
and the observations. However, the true location is not known, and has to be inferred from the
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zt−1 zt zt+1

Memory Memory Memory

at−1 at at

xt−1 xt xt+1

ut−1 ut ut+1

VAE

SSM

Figure 4.8: A generative temporal model with spatial memory. Solid arrows represent the generative
model while dashed arrows represent the VAE inference network. Green lines represent the
additional dependencies with respect to the KVAE model of Figure 4.7.

sequence of actions and some knowledge on the physics of the moving agent. As explained below,
we can solve this task by carefully designing the model with a structured prior as discussed in
Section 4.6.

We model the agent dynamics with a SSM with a 3-dimensional state zt, so that the model can
learn to use two components to represent the position of the agent in the environment and the
third component to represent in which direction the agent is looking. The transition probabilities
can be used to model how each action changes the state of the agent, and its parameters can
be learned from data. Also, instead of remembering the full high-dimensional observations, it is
easier for the model to remember a compressed representation, that can be obtained for example
with a VAE with latent state at. The resulting model is the generative temporal model with
spatial memory (GTM-SM), that is shown in Figure 4.8. We can notice that it is very close to
the KVAE introduced in Section 4.6.1, with two important differences:

1. The transitions need to be non-linear, as they need to model the agent’s movement that is
subject to momentum, friction and saturation. As opposed to the KVAE we are therefore
not able to use a LGSSM and leverage its exact inference procedure.

2. While exploring the environment, the agent needs to be able to memorize at each time step
its location (the state of the SSM) and the encoded observation (the latent variable from
the VAE). These learned and disentangled representations of the environment are stored
in a non-parametric spatial memory called differentiable neural dictionary (DND) (Pritzel
et al., 2017). While predicting a future observation xt the agent can then infer its future
state zt given the new sequence of actions, and retrieve from memory what it had seen
before in that location (or close to it). To model this, the emission distribution of the SSM,
i.e. the VAE prior, needs to also depend on the memory: pθ(at|zt,Memory).

This model is presented in detail in Chapter 7, where we can also see that it is able to coherently
predict over hundreds of time steps across a range of partially-observed 2D and 3D environments
(Section 7.4).
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4.8 Lessons learned in training sequential deep latent variable
models

The implementation of this class of models is fairly simple, thanks to the availability of deep
learning libraries that use automatic differentiation to compute the gradients needed during
training. However, getting the models to perform well may be much more challenging and require
some experience. We therefore share below some lessons learned with a lot of trial an error on
how to train deep latent variable models for sequential data.

Most of the challenges faced during training are due to the usage of deep neural networks within
the probabilistic model. While their flexibility is beneficial in terms of modelling power, the
behavior of complex neural architectures such as the ones presented in this thesis can be difficult
to predict. It is then fundamental to understand in depth the role of all the components that
form model, inference network and cost function, and how they interact and influence each other.
To achieve this it can be beneficial to:

• Start from toy examples the model has to be able to solve. This allows to become more
familiar with the working principles of the model, and to detect many of the modelling
issues that would be impossible to isolate in more complex applications. Also, toy examples
are often very fast to run, and can produce lots of intuitions and visualizations that can be
used to assess the performance of the model on more complex tasks (as well as used when
writing the paper to give intuition to the reader). The complexity of the toy example can
be often increased as we start learning how to train the model, until the point at which the
complexity is similar to the one of the original task we want to solve. If the model does not
perform well in a basic toy example it is often pointless to try it as it is on more complex
tasks.

• During training it is very informative to monitor the evolution of lots of statistics, such as
the variance of all the distributions in the model, the various term that form the ELBO and
the norm of the gradients. We ideally want one informative statistic for each component of
the model, inference network and cost function.

Following these suggestions it is easier to assess if parts of the network are not being used or do
not work as we expected, as well as to come up with some tricks that can be used to improve the
training procedure. Also, they can give a better idea on how to tune some of the hyperparameters
of the model.

This approach is of course more challenging and time consuming than the more traditional
empirical deep learning approach in which we try many different complex neural architectures
until the performances are good. However, our experience with these models suggests that while
in theory big neural networks could learn to automatically do these very complex tasks, in
practice they rarely do. In the following we will see that in this case the only way to achieve good
performances is to have a deep understanding of the models and of their training dynamics and
use it to come up with principled training tricks.
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4.8.1 Training tricks

We now present some of the issues we found when training some of the architectures presented in
this chapter, focusing on how to detect them, providing some intuition on why they appear and
listing some of the tricks we found useful to solve them. Coming up with the right training tricks
to best learn complex deep learning models has become a fundamental step in a researcher’s
agenda, as they can make huge differences in terms of final performances. For the deep latent
variable models for sequential data presented in this chapter some of the tricks are the same as
the ones typically used for VAEs. There is however an additional challenge given by the fact that
in this case we are dealing with learned time-varying priors, as opposed to the fixed isotropic
Gaussian prior typically used in VAEs.

One of the main issues encountered while training deep latent variable models is their difficulty
in learning to fully exploit the stochasticity in the latent states. It is common to notice that
in the beginning of training the KL term in the ELBO becomes very small and never recovers.
This suggests that in many of the dimensions of the latent variable the variational approximation
coincides with the prior, making the corresponding unit essentially inactive (Burda et al., 2015;
Sønderby et al., 2016b). From an optimization point of view we can see this as an initially
attractive local minimum, as in this case there will be no penalty in the ELBO from the KL term
(we are maximizing the ELBO, in which there is a minus in front of the non-negative KL term).
In this case a common solution to mitigate this issue is to decrease the importance of minimizing
the KL term in the beginning of training by:

• Multiplying the KL term by a constant β that is annealed from 0 to 1 during training
(Bowman et al., 2015; Sønderby et al., 2016b)

• Modifying the ELBO so that decreasing the KL term below a given threshold is no longer
advantageous, as in the free bits approach of Kingma et al., (2016).

In temporal models for which we are learning the time-varying prior, small values of the KL term
can be also caused by the fact that for the model it may be particularly challenging to learn to
approximate the posterior. In particular it may be difficult for the variational approximation to
keep track of the changes in the posterior distribution caused by the non-stationary time-varying
prior. This is the case for example in DSSMs and SRNNs. An effective solution to make it easier
for the model to learn a good variational approximation and therefore exploit the stochasticity is
to

• learn only the residual between the mean of the predictive prior distribution µ(p)
t and the

the mean of the variational approximation µ(q)
t at each time step (Fraccaro et al., 2016c).

We then modify (4.9) to
µ
(q)
t = µ

(p)
t + NN

(q)
1 (zt−1,at) .

For models for which there is a fully deterministic path from ut to xt powerful enough to explain
most of the structure in the data, such as the RNN in the VRNN and in the SRNN, it is possible
that the model learns not use stochastic part at all. This was also noticed in (Chen et al., 2017)
in the static setting for models with very expressive decoders. This issue is often accompanied in
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the temporal setting both by small KL terms and very small learned variances of the distributions
over the latent variables that make the model essentially deterministic. A possible way to partially
prevent this from happening is by:

• Lower bounding the variances to a given value or fixing them, so that it is not possible for
the model to completely disregard the stochasticity.

• Using some of the tricks presented above to avoid small KL terms.

A particular attention should be used for models in which the various components of the ELBO
depend on vectors with very different dimensionalities. For KVAEs and GTMs-SM for example,
the KL term depends on the low-dimensional SSM states whereas the observations in the VAE
reconstruction term are high-dimensional images. In the ELBO therefore the reconstruction term
will dominate, and the training algorithm will then mostly focus in optimizing the VAE and not
the SSM. Possible solutions in this case are:

• Re-weighting of the terms in the ELBO, and in particular only considering a fraction of
the reconstruction term of the VAEs during training (e.g. by multiplying it by 0.3). In this
way we can in fact help the model to focus on learning the SSM temporal dynamics as well
(Fraccaro et al., 2017).

• Alternate the updates of VAE and SSM parameters, so that we make sure that in some
updates the SSM is being optimized as well (Fraccaro et al., 2017).

4.9 Summary and discussion

In this chapter we have introduced a family of sequential deep latent variable models for unsu-
pervised learning of complex data distributions from large unlabelled datasets. In Sections 4.2
and 4.3 we have discussed recurrent neural networks and deep state-space models that, together
with VAEs, form the building blocks for the more complex architectures presented in the rest of
the chapter. The VAE-RNN model, introduced in Section 4.4.1, is a basic temporal extension of
VAEs that uses an RNN to model the dependencies between latent variables at different time
steps. In Section 4.4.2 we then argued that in some cases the VAE-RNN model is not enough to
model accurately the temporal variability in the data, and defined the VRNN as a more expressive
architecture that makes zt depend on zt−1 indirectly through the deterministic RNN state dt.
The SRNN model of Section 4.5 improves on the VRNN by adding a direct dependency between
latent variables at consecutive time steps. The resulting architecture is then obtained stacking an
RNN and a DSSM, and has a clear separation between deterministic and stochastic variables
that is beneficial at inference time. We have then seen in Section 4.6 that using structured
priors we can define architectures capable of learning disentangled representations that are more
interpretable and data-efficient. In particular, we have constructed the KVAE model by using a
LGSSM to parameterize the prior of the same VAE repeated at each time step, and showed that
we can leverage the exact inference and missing data imputation capabilities of the LGSSM. To
deal with applications that require a high memory capacity we have shown in Section 4.7 that
we can exploit external memory architectures, such as the DND memory used in the GTM-SM
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model. Due to the complexity of these models defining and training them can be challenging. In
Section 4.8 we have then discussed some suggestions and training tricks that have proven useful
when working with such models.

All the models presented in this chapter were obtained following the same very general procedure.
We always start defining the joint distribution of the model in which we encode all the modelling
assumptions that are suitable for the particular application at hand. To learn the parameters of the
model using Maximum Likelihood, we need to compute the data log-likelihood by marginalizing
the joint distribution over the latent variables. Since this integral is often intractable, we define a
variational approximation over the latent variables of the model conditioned on the inputs and
outputs, and use Jensen’s inequality to derive the ELBO, the objective function used during
training. When can design a variational distribution that better approximates the true posterior
distribution by making use of the independence properties among the variables of the model.
The scalability of the models is ensured using inference networks to define scalable and flexible
variational approximations parameterized by deep neural networks. As both the generative model
and the variational approximation are defined using neural network architectures, we can train
their parameters jointly using stochastic gradient ascent, computing their gradients efficiently on
GPU.

In the following chapters we will present in detail some of the models briefly described above,
namely Stochastic recurrent neural networks (Fraccaro et al., 2016c, Chapter 5), Kalman vari-
ational auto-encoders (Fraccaro et al., 2017, Chapter 6) and generative temporal models with
spatial memory (Fraccaro et al., 2018, Chapter 7).
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Abstract: How can we efficiently propagate uncertainty in a latent state representation
with recurrent neural networks? This paper introduces stochastic recurrent neural networks
which glue a deterministic recurrent neural network and a state space model together
to form a stochastic and sequential neural generative model. The clear separation of
deterministic and stochastic layers allows a structured variational inference network to track
the factorization of the model’s posterior distribution. By retaining both the nonlinear
recursive structure of a recurrent neural network and averaging over the uncertainty in a
latent path, like a state space model, we improve the state of the art results on the Blizzard
and TIMIT speech modeling data sets by a large margin, while achieving comparable
performances to competing methods on polyphonic music modeling.
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5.1 Introduction

Recurrent neural networks (RNNs) are able to represent long-term dependencies in sequential data,
by adapting and propagating a deterministic hidden (or latent) state (Cho et al., 2014; Hochreiter
and Schmidhuber, 1997). There is recent evidence that when complex sequences such as speech
and music are modeled, the performances of RNNs can be dramatically improved when uncertainty
is included in their hidden states (Bayer and Osendorfer, 2014; Boulanger-Lewandowski et al.,
2012; Chung et al., 2015; Fabius and Amersfoort, 2014; Gan et al., 2015; Gu et al., 2015). In
this paper we add a new direction to the explorer’s map of treating the hidden RNN states as
uncertain paths, by including the world of state space models (SSMs) as an RNN layer. By
cleanly delineating a SSM layer, certain independence properties of variables arise, which are
beneficial for making efficient posterior inferences. The result is a generative model for sequential
data, with a matching inference network that has its roots in variational auto-encoders (VAEs).

SSMs can be viewed as a probabilistic extension of RNNs, where the hidden states are assumed to
be random variables. Although SSMs have an illustrious history (Roweis and Ghahramani, 1999),
their stochasticity has limited their widespread use in the deep learning community, as inference
can only be exact for two relatively simple classes of SSMs, namely hidden Markov models and
linear Gaussian models, neither of which are well-suited to modeling long-term dependencies and
complex probability distributions over high-dimensional sequences. On the other hand, modern
RNNs rely on gated nonlinearities such as long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997) cells or gated recurrent units (GRUs) (Chung et al., 2014), that let the
deterministic hidden state of the RNN act as an internal memory for the model. This internal
memory seems fundamental to capturing complex relationships in the data through a statistical
model.

This paper introduces the stochastic recurrent neural network (SRNN) in Section 5.3. SRNNs
combine the gated activation mechanism of RNNs with the stochastic states of SSMs, and are
formed by stacking a RNN and a nonlinear SSM. The state transitions of the SSM are nonlinear
and are parameterized by a neural network that also depends on the corresponding RNN hidden
state. The SSM can therefore utilize long-term information captured by the RNN.

We use recent advances in variational inference to efficiently approximate the intractable posterior
distribution over the latent states with an inference network (Kingma and Welling, 2014; Rezende
et al., 2014). The form of our variational approximation is inspired by the independence properties
of the true posterior distribution over the latent states of the model, and allows us to improve
inference by conveniently using the information coming from the whole sequence at each time step.
The posterior distribution over the latent states of the SRNN is highly non-stationary while we
are learning the parameters of the model. To further improve the variational approximation, we
show that we can construct the inference network so that it only needs to learn how to compute
the mean of the variational approximation at each time step given the mean of the predictive
prior distribution.

In Section 5.4 we test the performances of SRNN on speech and polyphonic music modeling tasks.
SRNN improves the state of the art results on the Blizzard and TIMIT speech data sets by a large
margin, and performs comparably to competing models on polyphonic music modeling. Finally,
other models that extend RNNs by adding stochastic units will be reviewed and compared to
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Figure 5.1: Graphical models to generate x1:T with a recurrent neural network (RNN) and a state space
model (SSM). Diamond-shaped units are used for deterministic states, while circles are
used for stochastic ones. For sequence generation, like in a language model, one can use
ut = xt−1.

SRNN in Section 5.5.

5.2 Recurrent Neural Networks and State Space Models

Recurrent neural networks and state space models are widely used to model temporal sequences
of vectors x1:T = (x1,x2, . . . ,xT ) that possibly depend on inputs u1:T = (u1,u2, . . . ,uT ). Both
models rest on the assumption that the sequence x1:t of observations up to time t can be
summarized by a latent state dt or zt, which is deterministically determined (dt in a RNN) or
treated as a random variable which is averaged away (zt in a SSM). The difference in treatment
of the latent state has traditionally led to vastly different models: RNNs recursively compute
dt = f(dt−1,ut) using a parameterized nonlinear function f , like a LSTM cell or a GRU. The RNN
observation probabilities p(xt|dt) are equally modeled with nonlinear functions. SSMs, like linear
Gaussian or hidden Markov models, explicitly model uncertainty in the latent process through
z1:T . Parameter inference in a SSM requires z1:T to be averaged out, and hence p(zt|zt−1,ut)
and p(xt|zt) are often restricted to the exponential family of distributions to make many existing
approximate inference algorithms applicable. On the other hand, averaging a function over the
deterministic path d1:T in a RNN is a trivial operation. The striking similarity in factorization
between these models is illustrated in Figures 5.1a and 5.1b.

Can we combine the best of both worlds, and make the stochastic state transitions of SSMs
nonlinear whilst keeping the gated activation mechanism of RNNs? Below, we show that a more
expressive model can be created by stacking a SSM on top of a RNN, and that by keeping them
layered, the functional form of the true posterior distribution over z1:T guides the design of a
backward-recursive structured variational approximation.

5.3 Stochastic Recurrent Neural Networks

We define a SRNN as a generative model pθ by temporally interlocking a SSM with a RNN,
as illustrated in Figure 5.2a. The joint probability of a single sequence and its latent states,
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Figure 5.2: A SRNN as a generative model pθ for a sequence x1:T . Posterior inference of z1:T and
d1:T is done through an inference network qφ, which uses a backward-recurrent state at to
approximate the nonlinear dependence of zt on future observations xt:T and states dt:T ; see
Equation (5.7).

assuming knowledge of the starting states z0 = 0 and d0 = 0, and inputs u1:T , factorizes as

pθ(x1:T , z1:T ,d1:T |u1:T , z0,d0) = pθx(x1:T |z1:T ,d1:T ) pθz(z1:T |d1:T , z0) pθd(d1:T |u1:T ,d0)

=
T∏
t=1

pθx(xt|zt,dt) pθz(zt|zt−1,dt) pθd(dt|dt−1,ut) . (5.1)

The SSM and RNN are further tied with skip-connections from dt to xt. The joint density in
(5.1) is parameterized by θ = {θx, θz, θd}, which will be adapted together with parameters φ
of a so-called “inference network” qφ to best model N independently observed data sequences
{xi1:Ti}Ni=1 that are described by the log marginal likelihood or evidence

L(θ) = log pθ
(
{xi1:Ti} | {ui1:Ti , zi0,di0}Ni=1

)
=
∑
i

log pθ(x
i
1:Ti |ui1:Ti , zi0,di0) =

∑
i

Li(θ) . (5.2)

Throughout the paper, we omit superscript i when only one sequence is referred to, or when
it is clear from the context. In each log likelihood term Li(θ) in (5.2), the latent states z1:T
and d1:T were averaged out of (5.1). Integrating out d1:T is done by simply substituting its
deterministically obtained value, but z1:T requires more care, and we return to it in Section 5.3.2.
Following Figure 5.2a, the states d1:T are determined from d0 and u1:T through the recursion
dt = fθd(dt−1,ut). In our implementation fθd is a GRU network with parameters θd. For later
convenience we denote the value of d1:T , as computed by application of fθd , by d̃1:T . Therefore
pθd(dt|dt−1,ut) = δ(dt − d̃t), i.e. d1:T follows a delta distribution centered at d̃1:T .

Unlike the VRNN (Chung et al., 2015), zt directly depends on zt−1, as it does in a SSM, via
pθz(zt|zt−1,dt). This split makes a clear separation between the deterministic and stochastic
parts of pθ; the RNN remains entirely deterministic and its recurrent units do not depend on noisy
samples of zt, while the prior over zt follows the Markov structure of SSMs. The split allows us
to later mimic the structure of the posterior distribution over z1:T and d1:T in its approximation
qφ. We let the prior transition distribution pθz(zt|zt−1,dt) = N (zt;µ

(p)
t ,v

(p)
t ) be a Gaussian with
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a diagonal covariance matrix, whose mean and log-variance are parameterized by neural networks
that depend on zt−1 and dt,

µ
(p)
t = NN

(p)
1 (zt−1,dt) , log v

(p)
t = NN

(p)
2 (zt−1,dt) , (5.3)

where NN denotes a neural network. Parameters θz denote all weights of NN
(p)
1 and NN

(p)
2 , which

are two-layer feed-forward networks in our implementation. Similarly, the parameters of the
emission distribution pθx(xt|zt,dt) depend on zt and dt through a similar neural network that is
parameterized by θx.

5.3.1 Variational inference for the SRNN

The stochastic variables z1:T of the nonlinear SSM cannot be analytically integrated out to obtain
L(θ) in (5.2). Instead of maximizing L with respect to θ, we maximize a variational evidence
lower bound (ELBO) F(θ, φ) =

∑
iFi(θ, φ) ≤ L(θ) with respect to both θ and the variational

parameters φ (Jordan et al., 1999). The ELBO is a sum of lower bounds Fi(θ, φ) ≤ Li(θ), one
for each sequence i,

Fi(θ, φ) =

∫∫
qφ(z1:T ,d1:T |x1:T , A) log

pθ(x1:T , z1:T ,d1:T |A)

qφ(z1:T ,d1:T |x1:T , A)
dz1:T dd1:T , (5.4)

where A = {u1:T , z0,d0} is a notational shorthand. Each sequence’s approximation qφ shares
parameters φ with all others, to form the auto-encoding variational Bayes inference network
or variational auto encoder (VAE) (Kingma and Welling, 2014; Rezende et al., 2014) shown
in Figure 5.2b. Maximizing F(θ, φ) – which we call “training” the neural network architecture
with parameters θ and φ – is done by stochastic gradient ascent, and in doing so, both the
posterior and its approximation qφ change simultaneously. All the intractable expectations in
(5.4) would typically be approximated by sampling, using the reparameterization trick (Kingma
and Welling, 2014; Rezende et al., 2014) or control variates (Paisley et al., 2012) to obtain low-
variance estimators of its gradients. We use the reparameterization trick in our implementation.
Iteratively maximizing F over θ and φ separately would yield an expectation maximization-type
algorithm, which has formed a backbone of statistical modeling for many decades (Dempster et al.,
1977). The tightness of the bound depends on how well we can approximate the i = 1, . . . , N
factors pθ(zi1:Ti ,d

i
1:Ti
|xi1:Ti , Ai) that constitute the true posterior over all latent variables with

their corresponding factors qφ(zi1:Ti ,d
i
1:Ti
|xi1:Ti , Ai). In what follows, we show how qφ could be

judiciously structured to match the posterior factors.

We add initial structure to qφ by noticing that the prior pθd(d1:T |u1:T ,d0) in the generative model
is a delta function over d̃1:T , and so is the posterior pθ(d1:T |x1:T ,u1:T ,d0). Consequently, we
let the inference network use exactly the same deterministic state setting d̃1:T as that of the
generative model, and we decompose it as

qφ(z1:T ,d1:T |x1:T ,u1:T , z0,d0) = qφ(z1:T |d1:T ,x1:T , z0) q(d1:T |x1:T ,u1:T ,d0)︸ ︷︷ ︸
= pθd (d1:T |u1:T ,d0)

. (5.5)

This choice exactly approximates one delta-function by itself, and simplifies the ELBO by letting
them cancel out. By further taking the outer average in (5.4), one obtains

Fi(θ, φ) = Eqφ
[
log pθ(x1:T |z1:T , d̃1:T )

]
−KL

(
qφ(z1:T |d̃1:T ,x1:T , z0)

∥∥ pθ(z1:T |d̃1:T , z0)
)
, (5.6)
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which still depends on θd, u1:T and d0 via d̃1:T . The first term is an expected log likelihood under
qφ(z1:T |d̃1:T ,x1:T , z0), while KL denotes the Kullback-Leibler divergence between two distributions.
Having stated the second factor in (5.5), we now turn our attention to parameterizing the first
factor in (5.5) to resemble its posterior equivalent, by exploiting the temporal structure of pθ.

5.3.2 Exploiting the temporal structure

The true posterior distribution of the stochastic states z1:T , given both the data and the
deterministic states d1:T , factorizes as pθ(z1:T |d1:T ,x1:T ,u1:T , z0) =

∏
t pθ(zt|zt−1,dt:T ,xt:T ).

This can be verified by considering the conditional independence properties of the graphical
model in Figure 5.2a using d-separation (Geiger et al., 1990). This shows that, knowing zt−1, the
posterior distribution of zt does not depend on the past outputs and deterministic states, but
only on the present and future ones; this was also noted in (Krishnan et al., 2015). Instead of
factorizing qφ as a mean-field approximation across time steps, we keep the structured form of
the posterior factors, including zt’s dependence on zt−1, in the variational approximation

qφ(z1:T |d1:T ,x1:T , z0) =
∏
t

qφ(zt|zt−1,dt:T ,xt:T )

=
∏
t

qφz(zt|zt−1,at = gφa(at+1, [dt,xt])) , (5.7)

where [dt,xt] is the concatenation of the vectors dt and xt. The graphical model for the inference
network is shown in Figure 5.2b. Apart from the direct dependence of the posterior approximation
at time t on both dt:T and xt:T , the distribution also depends on d1:t−1 and x1:t−1 through zt−1.
We mimic each posterior factor’s nonlinear long-term dependence on dt:T and xt:T through a
backward-recurrent function gφa , shown in (5.7), which we will return to in greater detail in
Section 5.3.3. The inference network in Figure 5.2b is therefore parameterized by φ = {φz, φa}
and θd.

In (5.7) all time steps are taken into account when constructing the variational approximation at
time t; this can therefore be seen as a smoothing problem. In our experiments we also consider
filtering, where only the information up to time t is used to define qφ(zt|zt−1,dt,xt). As the
parameters φ are shared across time steps, we can easily handle sequences of variable length in
both cases.

As both the generative model and inference network factorize over time steps in (5.1) and (5.7),
the ELBO in (5.6) separates as a sum over the time steps

Fi(θ, φ) =
∑
t

Eq∗φ(zt−1)

[
E
qφ(zt|zt−1,d̃t:T ,xt:T )

[
log pθ(xt|zt, d̃t)

]
+

−KL
(
qφ(zt|zt−1, d̃t:T ,xt:T )

∥∥ pθ(zt|zt−1, d̃t))] , (5.8)

where q∗φ(zt−1) denotes the marginal distribution of zt−1 in the variational approximation to the
posterior qφ(z1:t−1|d̃1:T ,x1:T , z0), given by

q∗φ(zt−1) =

∫
qφ(z1:t−1|d̃1:T ,x1:T , z0) dz1:t−2

= Eq∗φ(zt−2)

[
qφ(zt−1|zt−2, d̃t−1:T ,xt−1:T )

]
. (5.9)
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We can interpret (5.9) as having a VAE at each time step t, with the VAE being conditioned on
the past through the stochastic variable zt−1. To compute (5.8), the dependence on zt−1 needs
to be integrated out, using our posterior knowledge at time t − 1 which is given by q∗φ(zt−1).
We approximate the outer expectation in (5.8) using a Monte Carlo estimate, as samples from
q∗φ(zt−1) can be efficiently obtained by ancestral sampling. The sequential formulation of the

inference model in (5.7) allows such samples to be drawn and reused, as given a sample z
(s)
t−2

from q∗φ(zt−2), a sample z
(s)
t−1 from qφ(zt−1|z(s)t−2, d̃t−1:T ,xt−1:T ) will be distributed according to

q∗φ(zt−1).

5.3.3 Parameterization of the inference network

The variational distribution qφ(zt|zt−1,dt:T ,xt:T ) needs to approximate the dependence of the
true posterior pθ(zt|zt−1,dt:T ,xt:T ) on dt:T and xt:T , and as alluded to in (5.7), this is done
by running a RNN with inputs d̃t:T and xt:T backwards in time. Specifically, we initialize
the hidden state of the backward-recursive RNN in Figure 5.2b as aT+1 = 0, and recursively
compute at = gφa(at+1, [d̃t,xt]). The function gφa represents a recurrent neural network with, for
example, LSTM or GRU units. Each sequence’s variational approximation factorizes over time
with qφ(z1:T |d1:T ,x1:T , z0) =

∏
t qφz(zt|zt−1,at), as shown in (5.7). We let qφz(zt|zt−1,at) be a

Gaussian with diagonal covariance, whose mean and the log-variance are parameterized with φz
as

µ
(q)
t = NN

(q)
1 (zt−1,at) , log v

(q)
t = NN

(q)
2 (zt−1,at) . (5.10)

Instead of smoothing, we can also do filtering by using a neural network to approximate the
dependence of the true posterior pθ(zt|zt−1,dt,xt) on dt and xt, through for instance at =
NN(a)(dt,xt).

Improving the posterior approximation. In our experiments we found that during train-
ing, the parameterization introduced in (5.10) can lead to small values of the KL term
KL(qφ(zt|zt−1,at) ‖ pθ(zt|zt−1, d̃t)) in the ELBO in (5.8). This happens when gφ in the in-
ference network does not rely on the information propagated back from future outputs in at, but
it is mostly using the hidden state d̃t to imitate the behavior of the prior. The inference network
could therefore get stuck by trying to optimize the ELBO through sampling from the prior of the
model, making the variational approximation to the posterior useless. To overcome this issue, we
directly include some knowledge of the predictive prior dynamics in the parameterization of the
inference network, using our approximation of the posterior distribution q∗φ(zt−1) over the previous
latent states. In the spirit of sequential Monte Carlo methods (Doucet et al., 2001), we improve
the parameterization of qφ(zt|zt−1,at) by using q∗φ(zt−1) from (5.9). As we are constructing the
variational distribution sequentially, we approximate the predictive prior mean, i.e. our “best
guess” on the prior dynamics of zt, as

µ̂
(p)
t =

∫
NN

(p)
1 (zt−1,dt) p(zt−1|x1:T ) dzt−1 ≈

∫
NN

(p)
1 (zt−1,dt) q

∗
φ(zt−1) dzt−1 , (5.11)

where we used the parameterization of the prior distribution in (5.3). We estimate the integral
required to compute µ̂(p)

t by reusing the samples that were needed for the Monte Carlo estimate
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Algorithm 2 Inference of SRNN with Resq parameterization from (5.12).

1: inputs: d̃1:T and a1:T

2: initialize z0
3: for t = 1 to T do
4: µ̂

(p)
t = NN

(p)
1 (zt−1, d̃t)

5: µ
(q)
t = µ̂

(p)
t + NN

(q)
1 (zt−1,at)

6: log v
(q)
t = NN

(q)
2 (zt−1,at)

7: zt ∼ N (zt;µ
(q)
t ,v

(q)
t )

8: end for

of the ELBO in (5.8). This predictive prior mean can then be used in the parameterization of
the mean of the variational approximation qφ(zt|zt−1,at),

µ
(q)
t = µ̂

(p)
t + NN

(q)
1 (zt−1,at) , (5.12)

and we refer to this parameterization as Resq in the results in Section 5.4. Rather than directly
learning µ(q)

t , we learn the residual between µ̂(p)
t and µ(q)

t . It is straightforward to show that with
this parameterization the KL-term in (5.8) will not depend on µ̂(p)

t , but only on NN
(q)
1 (zt−1,at).

Learning the residual improves inference, making it seemingly easier for the inference network to
track changes in the generative model while the model is trained, as it will only have to learn
how to “correct” the predictive prior dynamics by using the information coming from d̃t:T and
xt:T . We did not see any improvement in results by parameterizing log v

(q)
t in a similar way.

The inference procedure of SRNN with Resq parameterization for one sequence is summarized in
Algorithm 2.

5.4 Results

In this section the SRNN is evaluated on the modeling of speech and polyphonic music data, as
they have shown to be difficult to model without a good representation of the uncertainty in the
latent states Bayer and Osendorfer, 2014; Chung et al., 2015; Fabius and Amersfoort, 2014; Gan
et al., 2015; Gu et al., 2015. We test SRNN on the Blizzard (King and Karaiskos, 2013) and
TIMIT raw audio data sets (Table 5.1) used in (Chung et al., 2015). The preprocessing of the
data sets and the testing performance measures are identical to those reported in (Chung et al.,
2015). Blizzard is a dataset of 300 hours of English, spoken by a single female speaker. TIMIT is
a dataset of 6300 English sentences read by 630 speakers. As done in (Chung et al., 2015), for
Blizzard we report the average log-likelihood for half-second sequences and for TIMIT we report
the average log likelihood per sequence for the test set sequences. Note that the sequences in the
TIMIT test set are on average 3.1s long, and therefore 6 times longer than those in Blizzard. For
the raw audio datasets we use a fully factorized Gaussian output distribution. Additionally, we
test SRNN for modeling sequences of polyphonic music (Table 5.2), using the four data sets of
MIDI songs introduced in (Boulanger-Lewandowski et al., 2012). Each data set contains more
than 7 hours of polyphonic music of varying complexity: folk tunes (Nottingham data set), the
four-part chorales by J. S. Bach (JSB chorales), orchestral music (MuseData) and classical piano
music (Piano-midi.de). For polyphonic music we use a Bernoulli output distribution to model the
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binary sequences of piano notes. In our experiments we set ut = xt−1, but ut could also be used
to represent additional input information to the model.

All models where implemented using Theano (Bastien et al., 2012), Lasagne (Dieleman et al.,
2015) and Parmesan1. Training using a NVIDIA Titan X GPU took around 1.5 hours for
TIMIT, 18 hours for Blizzard, less than 15 minutes for the JSB chorales and Piano-midi.de
data sets, and around 30 minutes for the Nottingham and MuseData data sets. To reduce the
computational requirements we use only 1 sample to approximate all the intractable expectations
in the ELBO (notice that the KL term can be computed analytically). Further implementation
and experimental details can be found in the Supplementary Material.

Blizzard and TIMIT. Table 5.1 compares the average log-likelihood per test sequence of
SRNN to the results from (Chung et al., 2015). For RNNs and VRNNs the authors of (Chung
et al., 2015) test two different output distributions, namely a Gaussian distribution (Gauss) and
a Gaussian Mixture Model (GMM). VRNN-I differs from the VRNN in that the prior over the
latent variables is independent across time steps, and it is therefore similar to STORN (Bayer
and Osendorfer, 2014). For SRNN we compare the smoothing and filtering performance (denoted
as smooth and filt in Table 5.1), both with the residual term from (5.12) and without it (5.10)
(denoted as Resq if present). We prefer to only report the more conservative evidence lower bound
for SRNN, as the approximation of the log-likelihood using standard importance sampling is
known to be difficult to compute accurately in the sequential setting (Doucet et al., 2001). We
see from Table 5.1 that SRNN outperforms all the competing methods for speech modeling. As
the test sequences in TIMIT are on average more than 6 times longer than the ones for Blizzard,
the results obtained with SRNN for TIMIT are in line with those obtained for Blizzard. The
VRNN, which performs well when the voice of the single speaker from Blizzard is modeled, seems
to encounter difficulties when modeling the 630 speakers in the TIMIT data set. As expected,
for SRNN the variational approximation that is obtained when future information is also used
(smoothing) is better than the one obtained by filtering. Learning the residual between the
prior mean and the mean of the variational approximation, given in (5.12), further improves the
performance in 3 out of 4 cases.

In the first two lines of Figure 5.3 we plot two raw signals from the Blizzard test set and the
average KL term between the variational approximation and the prior distribution. We see that
the KL term increases whenever there is a transition in the raw audio signal, meaning that the
inference network is using the information coming from the output symbols to improve inference.
Finally, the reconstructions of the output mean and log-variance in the last two lines of Figure 5.3
look consistent with the original signal.

Polyphonic music. Table 5.2 compares the average log-likelihood on the test sets obtained
with SRNN and the models introduced in (Bayer and Osendorfer, 2014; Boulanger-Lewandowski
et al., 2012; Gan et al., 2015; Gu et al., 2015). As done for the speech data, we prefer to
report the more conservative estimate of the ELBO in Table 5.2, rather than approximating the
log-likelihood with importance sampling as some of the other methods do. We see that SRNN
performs comparably to other state of the art methods in all four data sets. We report the results
using smoothing and learning the residual between the mean of the predictive prior and the

1github.com/casperkaae/parmesan. The code for SRNN is available at github.com/marcofraccaro/srnn.

https://github.com/casperkaae/parmesan
https://github.com/marcofraccaro/srnn
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Models Blizzard TIMIT
SRNN

(smooth+Resq) ≥11991 ≥ 60550

SRNN (smooth) ≥ 10991 ≥ 59269

SRNN (filt+Resq) ≥ 10572 ≥ 52126

SRNN (filt) ≥ 10846 ≥ 50524

VRNN-GMM ≥ 9107 ≥ 28982
≈ 9392 ≈ 29604

VRNN-Gauss ≥ 9223 ≥ 28805
≈ 9516 ≈ 30235

VRNN-I-Gauss ≥ 8933 ≥ 28340
≈ 9188 ≈ 29639

RNN-GMM 7413 26643
RNN-Gauss 3539 -1900

Table 5.1: Average log-likelihood per sequence on the test sets. For TIMIT the average test set length is
3.1s, while the Blizzard sequences are all 0.5s long. The non-SRNN results are reported as in
(Chung et al., 2015). Smooth: gφa

is a GRU running backwards; filt: gφa
is a feed-forward

network; Resq: parameterization with residual in (5.12).

Models Nottingham JSB chorales MuseData Piano-midi.de
SRNN (smooth+Resq) ≥ −2.94 ≥ −4.74 ≥ −6.28 ≥ −8.20

TSBN ≥ −3.67 ≥ −7.48 ≥ −6.81 ≥ −7.98
NASMC ≈ −2.72 ≈ −3.99 ≈ −6.89 ≈ −7.61
STORN ≈ −2.85 ≈ −6.91 ≈ −6.16 ≈ −7.13

RNN-NADE ≈ −2.31 ≈ −5.19 ≈ −5.60 ≈ −7.05
RNN ≈ −4.46 ≈ −8.71 ≈ −8.13 ≈ −8.37

Table 5.2: Average log-likelihood on the test sets. The TSBN results are from (Gan et al., 2015), NASMC
from (Gu et al., 2015), STORN from (Bayer and Osendorfer, 2014), RNN-NADE and RNN
from (Boulanger-Lewandowski et al., 2012).

mean of the variational approximation, but the performances using filtering and directly learning
the mean of the variational approximation are now similar. We believe that this is due to the
small amount of data and the fact that modeling MIDI music is much simpler than modeling raw
speech signals.

5.5 Related work

A number of works have extended RNNs with stochastic units to model motion capture, speech
and music data (Bayer and Osendorfer, 2014; Chung et al., 2015; Fabius and Amersfoort, 2014;
Gan et al., 2015; Gu et al., 2015). The performances of these models are highly dependent on
how the dependence among stochastic units is modeled over time, on the type of interaction
between stochastic units and deterministic ones, and on the procedure that is used to evaluate
the typically intractable log likelihood. Figure 5.4 highlights how SRNN differs from some of
these works.
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Figure 5.3: Visualization of the average KL term and reconstructions of the output mean and log-variance
for two examples from the Blizzard test set.

dtdt−1

xt

ut

zt

(a) STORN

zt−1

dtdt−1

zt

xt

ut

(b) VRNN

zt−1 zt

xt

ut

(c) Deep Kalman Filter

Figure 5.4: Generative models of x1:T that are related to SRNN. For sequence modeling it is typical to
set ut = xt−1.

In STORN (Bayer and Osendorfer, 2014) (Figure 5.4a) and DRAW (Gregor et al., 2015) the
stochastic units at each time step have an isotropic Gaussian prior and are independent between
time steps. The stochastic units are used as an input to the deterministic units in a RNN. As in
our work, the reparameterization trick (Kingma and Welling, 2014; Rezende et al., 2014) is used
to optimize an ELBO.

The authors of the VRNN (Chung et al., 2015) (Figure 5.4b) note that it is beneficial to add
information coming from the past states to the prior over latent variables zt. The VRNN lets
the prior pθz(zt|dt) over the stochastic units depend on the deterministic units dt, which in turn
depend on both the deterministic and the stochastic units at the previous time step through the
recursion dt = f(dt−1, zt−1,ut). The SRNN differs by clearly separating the deterministic and
stochastic part, as shown in Figure 5.2a. The separation of deterministic and stochastic units
allows us to improve the posterior approximation by doing smoothing, as the stochastic units still
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depend on each other when we condition on d1:T . In the VRNN, on the other hand, the stochastic
units are conditionally independent given the states d1:T . Because the inference and generative
networks in the VRNN share the deterministic units, the variational approximation would not
improve by making it dependent on the future through at, when calculated with a backward GRU,
as we do in our model. Unlike STORN, DRAW and VRNN, the SRNN separates the “noisy”
stochastic units from the deterministic ones, forming an entire layer of interconnected stochastic
units. We found in practice that this gave better performance and was easier to train. The works
by (Archer et al., 2015; Krishnan et al., 2015) (Figure 5.4c) show that it is possible to improve
inference in SSMs by using ideas from VAEs, similar to what is done in the stochastic part (the
top layer) of SRNN. Towards the periphery of related works, (Gu et al., 2015) approximates the
log likelihood of a SSM with sequential Monte Carlo, by learning flexible proposal distributions
parameterized by deep networks, while (Gan et al., 2015) uses a recurrent model with discrete
stochastic units that is optimized using the NVIL algorithm (Mnih and Gregor, 2014).

5.6 Conclusion

This work has shown how to extend the modeling capabilities of recurrent neural networks by
combining them with nonlinear state space models. Inspired by the independence properties of
the intractable true posterior distribution over the latent states, we designed an inference network
in a principled way. The variational approximation for the stochastic layer was improved by
using the information coming from the whole sequence and by using the Resq parameterization to
help the inference network to track the non-stationary posterior. SRNN achieves state of the art
performances on the Blizzard and TIMIT speech data set, and performs comparably to competing
methods for polyphonic music modeling.

Supplementary material

Experimental setup

Blizzard and TIMIT. The sampling rate is 16KHz and the raw audio signal is normalized
using the global mean and standard deviation of the traning set. We split the raw audio signals
in chunks of 2 seconds. The waveforms are then divided into non-overlapping vectors of size
200. The RNN thus runs for 160 steps2. The model is trained to predict the next vector (xt)
given the current one (ut). During training we use backpropagation through time (BPTT) for 0.5
seconds, i.e we have 4 updates for each 2 seconds of audio. For the first 0.5 second we initialize
hidden units with zeros and for the subsequent 3 chunks we use the previous hidden states as
initialization.

For Blizzard we split the data using 90% for training, 5% for validation and 5% for testing. For
testing we report the average log-likelihood per 0.5s sequences. For TIMIT we use the predefined
test set for testing and split the rest of the data into 95% for training and 5% for validation. The

22s·16Khz / 200 = 160
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training and testing setup are identical to the ones for Blizzard. For TIMIT the test sequences
have variable length and are on average 3.1s, i.e. more than 6 times longer than Blizzard.

We model the output using a fully factorized Gaussian distribution for pθx(xt|zt,dt). The
deterministic RNNs use GRUs (Chung et al., 2014), with 2048 units for Blizzard and 1024
units for TIMIT. In both cases, zt is a 256-dimensional vector. All the neural networks have 2
layers, with 1024 units for Blizzard and 512 for TIMIT, and use leaky rectified nonlinearities
with leakiness 1

3 and clipped at ±3. In both generative and inference models we share a neural
network to extract features from the raw audio signal. The sizes of the models were chosen to
roughly match the number of parameters used in (Chung et al., 2015). In all experiments it was
fundamental to gradually introduce the KL term in the ELBO, as shown in (Bowman et al., 2015;
Sønderby et al., 2016a; Raiko et al., 2007). We therefore multiply a temperature β to the KL
term, i.e. βKL, and linearly increase β from 0.2 to 1 in the beginning of training (for Blizzard we
increase it by 0.0001 after each update, while for TIMIT by 0.0003). In both data sets we used
the ADAM optimizer (Kingma and Ba, 2014). For Blizzard we use a learning rate of 0.0003 and
batch size of 128, for TIMIT they are 0.001 and 64 respectively.

Polyphonic music. We use the same model architecture as in Section 5.4, except for the
output Bernoulli variables used to model the active notes. We reduced the number of parameters
in the model to 300 deterministic hidden units for the GRU networks, and 100 stochastic units
whose distributions are parameterized with neural networks with 1 layer of 500 units.
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Abstract: This paper takes a step towards temporal reasoning in a dynamically changing
video, not in the pixel space that constitutes its frames, but in a latent space that describes
the non-linear dynamics of the objects in its world. We introduce the Kalman variational
auto-encoder, a framework for unsupervised learning of sequential data that disentangles two
latent representations: an object’s representation, coming from a recognition model, and a
latent state describing its dynamics. As a result, the evolution of the world can be imagined
and missing data imputed, both without the need to generate high dimensional frames at
each time step. The model is trained end-to-end on videos of a variety of simulated physical
systems, and outperforms competing methods in generative and missing data imputation
tasks.
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6.1 Introduction

From the earliest stages of childhood, humans learn to represent high-dimensional sensory input
to make temporal predictions. From the visual image of a moving tennis ball, we can imagine
its trajectory, and prepare ourselves in advance to catch it. Although the act of recognising the
tennis ball is seemingly independent of our intuition of Newtonian dynamics (L. G. Ungerleider
and L. G. Haxby, 1994), very little of this assumption has yet been captured in the end-to-end
models that presently mark the path towards artificial general intelligence. Instead of basing
inference on any abstract grasp of dynamics that is learned from experience, current successes are
autoregressive: to imagine the tennis ball’s trajectory, one forward-generates a frame-by-frame
rendering of the full sensory input (Chiappa et al., 2017; Finn et al., 2016; Oh et al., 2015;
Patraucean et al., 2015; Srivastava et al., 2015; Sun et al., 2016).

To disentangle two latent representations, an object’s, and that of its dynamics, this paper
introduces Kalman variational auto-encoders (KVAEs), a model that separates an intuition of
dynamics from an object recognition network (section 6.3). At each time step t, a variational
auto-encoder (Kingma and Welling, 2014; Rezende et al., 2014) compresses high-dimensional
visual stimuli xt into latent encodings at. The temporal dynamics in the learned at-manifold are
modelled with a linear Gaussian state space model that is adapted to handle complex dynamics
(despite the linear relations among its states zt). The parameters of the state space model are
adapted at each time step, and non-linearly depend on past at’s via a recurrent neural network.
Exact posterior inference for the linear Gaussian state space model can be performed with the
Kalman filtering and smoothing algorithms, and is used for imputing missing data, for instance
when we imagine the trajectory of a bouncing ball after observing it in initial and final video
frames (section 6.4). The separation between recognition and dynamics model allows for missing
data imputation to be done via a combination of the latent states zt of the model and its encodings
at only, without having to forward-sample high-dimensional images xt in an autoregressive way.
KVAEs are tested on videos of a variety of simulated physical systems in section 6.5: from
raw visual stimuli, it “end-to-end” learns the interplay between the recognition and dynamics
components. As KVAEs can do smoothing, they outperform an array of methods in generative
and missing data imputation tasks (section 6.5).

6.2 Background

Linear Gaussian state space models. Linear Gaussian state space models (LGSSMs) are
widely used to model sequences of vectors a = a1:T = [a1, ..,aT ]. LGSSMs model temporal corre-
lations through a first-order Markov process on latent states z = [z1, .., zT ], which are potentially
further controlled with external inputs u = [u1, ..,uT ], through the Gaussian distributions

pγt(zt|zt−1,ut) = N (zt; Atzt−1 + Btut,Q) (6.1)
pγt(at|zt) = N (at; Ctzt,R) . (6.2)

Matrices γt = [At,Bt,Ct] are the state transition, control and emission matrices at time t. Q
and R are the covariance matrices of the process and measurement noise respectively. With a
starting state z1 ∼ N (z1; 0,Σ), the joint probability distribution of the LGSSM is given by

pγ(a, z|u) = pγ(a|z) pγ(z|u) =
∏T
t=1pγt(at|zt) · p(z1)

∏T
t=2 pγt(zt|zt−1,ut) , (6.3)
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zt−1 zt zt+1

at−1 at at+1

xt−1 xt xt+1

ut−1 ut ut+1

VAE

LGSSM

Figure 6.1: A KVAE is formed by stacking a LGSSM (dashed blue), and a VAE (dashed red). Shaded
nodes denote observed variables. Solid arrows represent the generative model (with parameters
θ) while dashed arrows represent the VAE inference network (with parameters φ).

where γ = [γ1, .., γT ]. LGSSMs have very appealing properties that we wish to exploit: the filtered
and smoothed posteriors p(zt|a1:t,u1:t) and p(zt|a,u) can be computed exactly with the classical
Kalman filter and smoother algorithms, and provide a natural way to handle missing data.

Variational auto-encoders. A variational auto-encoder (VAE) (Kingma and Welling, 2014;
Rezende et al., 2014) defines a deep generative model pθ(xt,at) = pθ(xt|at)p(at) for data xt by
introducing a latent encoding at. Given a likelihood pθ(xt|at) and a typically Gaussian prior p(at),
the posterior pθ(at|xt) represents a stochastic map from xt to at’s manifold. As this posterior is
commonly analytically intractable, VAEs approximate it with a variational distribution qφ(at|xt)
that is parameterized by φ. The approximation qφ is commonly called the recognition, encoding,
or inference network.

6.3 Kalman Variational Auto-Encoders

The useful information that describes the movement and interplay of objects in a video typically
lies in a manifold that has a smaller dimension than the number of pixels in each frame. In a
video of a ball bouncing in a box, like Atari’s game Pong, one could define a one-to-one mapping
from each of the high-dimensional frames x = [x1, ..,xT ] into a two-dimensional latent space that
represents the position of the ball on the screen. If the position was known for consecutive time
steps, for a set of videos, we could learn the temporal dynamics that govern the environment.
From a few new positions one might then infer where the ball will be on the screen in the future,
and then imagine the environment with the ball in that position.

The Kalman variational auto-encoder (KVAE) is based on the notion described above. To
disentangle recognition and spatial representation, a sensory input xt is mapped to at (VAE),
a variable on a low-dimensional manifold that encodes an object’s position and other visual
properties. In turn, at is used as a pseudo-observation for the dynamics model (LGSSM). xt
represents a frame of a video1 x = [x1, ..,xT ] of length T . Each frame is encoded into a point at

1While our main focus in this paper are videos, the same ideas could be applied more in general to any sequence
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on a low-dimensional manifold, so that the KVAE contains T separate VAEs that share the same
decoder pθ(xt|at) and encoder qφ(at|xt), and depend on each other through a time-dependent
prior over a = [a1, ..,aT ]. This is illustrated in figure 6.1.

6.3.1 Generative model

We assume that a acts as a latent representation of the whole video, so that the generative model
of a sequence factorizes as pθ(x|a) =

∏T
t=1 pθ(xt|at). In this paper pθ(xt|at) is a deep neural

network parameterized by θ, that emits either a factorized Gaussian or Bernoulli probability
vector depending on the data type of xt. We model a with a LGSSM, and following (6.3), its
prior distribution is

pγ(a|u) =

∫
pγ(a|z) pγ(z|u) dz , (6.4)

so that the joint density for the KVAE factorizes as p(x,a, z|u) = pθ(x|a) pγ(a|z) pγ(z|u). A
LGSSM forms a convenient back-bone to a model, as the filtered and smoothed distributions
pγ(zt|a1:t,u1:t) and pγ(zt|a,u) can be obtained exactly. Temporal reasoning can be done in the
latent space of zt’s and via the latent encodings a, and we can do long-term predictions without
having to auto-regressively generate high-dimensional images xt. Given a few frames, and hence
their encodings, one could “remain in latent space” and use the smoothed distributions to impute
missing frames. Another advantage of using a to separate the dynamics model from x can be
seen by considering the emission matrix Ct. Inference in the LGSSM requires matrix inverses,
and using it as a model for the prior dynamics of at allows the size of Ct to remain small, and
not scale with the number of pixels in xt. While the LGSSM’s process and measurement noise
in (6.1) are typically formulated with full covariance matrices (Roweis and Ghahramani, 1999),
we will consider them as isotropic in a KVAE, as at act as a prior in a generative model that
includes these extra degrees of freedom.

What happens when a ball bounces against a wall, and the dynamics on at are not linear any
more? Can we still retain a LGSSM backbone? We will incorporate nonlinearities into the
LGSSM by regulating γt from outside the exact forward-backward inference chain. We revisit
this central idea at length in section 6.3.3.

6.3.2 Learning and inference for the KVAE

We learn θ and γ from a set of example sequences {x(n)} by maximizing the sum of their respective
log likelihoods L =

∑
n log pθγ(x(n)|u(n)) as a function of θ and γ. For simplicity in the exposition

we restrict our discussion below to one sequence, and omit the sequence index n. The log
likelihood or evidence is an intractable average over all plausible settings of a and z, and exists
as the denominator in Bayes’ theorem when inferring the posterior p(a, z|x,u). A more tractable
approach to both learning and inference is to introduce a variational distribution q(a, z|x,u) that

of high dimensional data.
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approximates the posterior. The evidence lower bound (ELBO) F is

log p(x|u) = log

∫
p(x,a, z|u)

≥ Eq(a,z|x,u)
[
log

pθ(x|a)pγ(a|z)pγ(z|u)

q(a, z|x,u)

]
= F(θ, γ, φ) , (6.5)

and a sum of F ’s is maximized instead of a sum of log likelihoods. The variational distribution
q depends on φ, but for the bound to be tight we should specify q to be equal to the posterior
distribution that only depends on θ and γ. Towards this aim we structure q so that it incorporates
the exact conditional posterior pγ(z|a,u), that we obtain with Kalman smoothing, as a factor of
γ:

q(a, z|x,u) = qφ(a|x) pγ(z|a,u) =
∏T
t=1qφ(at|xt) pγ(z|a,u) . (6.6)

The benefit of the LGSSM backbone is now apparent. We use a “recognition model” to encode each
xt using a non-linear function, after which exact smoothing is possible. In this paper qφ(at|xt)
is a deep neural network that maps xt to the mean and the diagonal covariance of a Gaussian
distribution. As explained in section 6.4, this factorization allows us to deal with missing data in
a principled way. Using (6.6), the ELBO in (6.5) becomes

F(θ, γ, φ) = Eqφ(a|x)
[
log

pθ(x|a)

qφ(a|x)
+ Epγ(z|a,u)

[
log

pγ(a|z)pγ(z|u)

pγ(z|a,u)

]]
. (6.7)

The lower bound in (6.7) can be estimated using Monte Carlo integration with samples
{ã(i), z̃(i)}Ii=1 drawn from q,

F̂(θ, γ, φ) =
1

I

∑
i

log pθ(x|ã(i)) + log pγ(ã(i), z̃(i)|u)− log qφ(ã(i)|x)− log pγ(z̃(i)|ã(i),u) . (6.8)

Note that the ratio pγ(ã(i), z̃(i)|u)/pγ(z̃(i)|ã(i),u) in (6.8) gives pγ(ã(i)|u), but the formulation
with {z̃(i)} allows stochastic gradients on γ to also be computed. A sample from q can be obtained
by first sampling ã ∼ qφ(a|x), and using ã as an observation for the LGSSM. The posterior
pγ(z|ã,u) can be tractably obtained with a Kalman smoother, and a sample z̃ ∼ pγ(z|ã,u)
obtained from it. Parameter learning is done by jointly updating θ, φ, and γ by maximising the
ELBO on L, which decomposes as a sum of ELBOs in (6.7), using stochastic gradient ascent and
a single sample to approximate the intractable expectations.

6.3.3 Dynamics parameter network

The LGSSM provides a tractable way to structure pγ(z|a,u) into the variational approximation
in (6.6). However, even in the simple case of a ball bouncing against a wall, the dynamics on at
are not linear anymore. We can deal with these situations while preserving the linear dependency
between consecutive states in the LGSSM, by non-linearly changing the parameters γt of the
model over time as a function of the latent encodings up to time t− 1 (so that we can still define
a generative model). Smoothing is still possible as the state transition matrix At and others in
γt do not have to be constant in order to obtain the exact posterior pγ(zt|a,u).
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dt−1 dt dt+1

αt−1 αt αt+1

at−2 at−1 at

Figure 6.2: Dynamics parameter network for the KVAE.

Recall that γt describes how the latent state zt−1 changes from time t− 1 to time t. In the more
general setting, the changes in dynamics at time t may depend on the history of the system,
encoded in a1:t−1 and possibly a starting code a0 that can be learned from data. If, for instance,
we see the ball colliding with a wall at time t− 1, then we know that it will bounce at time t
and change direction. We then let γt be a learnable function of a0:t−1, so that the prior in (6.3)
becomes

pγ(a, z|u) =
∏T
t=1pγt(a0:t−1)(at|zt) · p(z1)

∏T
t=2 pγt(a0:t−1)(zt|zt−1,ut) . (6.9)

During inference, after all the frames are encoded in a, the dynamics parameter network returns
γ = γ(a), the parameters of the LGSSM at all time steps. We can now use the Kalman smoothing
algorithm to find the exact conditional posterior over z, that will be used when computing the
gradients of the ELBO.

In our experiments the dependence of γt on a0:t−1 is modulated by a dynamics parameter network
αt = αt(a0:t−1), that is implemented with a recurrent neural network with LSTM cells that
takes at each time step the encoded state as input and recurses dt = LSTM (at−1,dt−1) and
αt = softmax(dt), as illustrated in figure 6.2. The output of the dynamics parameter network is
weights that sum to one,

∑K
k=1 α

(k)
t (a0:t−1) = 1. These weights choose and interpolate between

K different operating modes:

At =

K∑
k=1

α
(k)
t (a0:t−1)A

(k), Bt =

K∑
k=1

α
(k)
t (a0:t−1)B

(k), Ct =

K∑
k=1

α
(k)
t (a0:t−1)C

(k) . (6.10)

We globally learn K basic state transition, control and emission matrices A(k), B(k) and C(k),
and interpolate them based on information from the VAE encodings. The weighted sum can be
interpreted as a soft mixture of K different LGSSMs whose time-invariant matrices are combined
using the time-varying weights αt. In practice, each of the K sets {A(k),B(k),C(k)} models
different dynamics, that will dominate when the corresponding α

(k)
t is high. The dynamics

parameter network resembles the locally-linear transitions of (Karl et al., 2017; Watter et al.,
2015); see section 6.6 for an in depth discussion on the differences.

6.4 Missing data imputation

Let xobs be an observed subset of frames in a video sequence, for instance depicting the initial
movement and final positions of a ball in a scene. From its start and end, can we imagine how
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the ball reaches its final position? Autoregressive models like recurrent neural networks can only
forward-generate xt frame by frame, and cannot make use of the information coming from the
final frames in the sequence. To impute the unobserved frames xun in the middle of the sequence,
we need to do inference, not prediction.

The KVAE exploits the smoothing abilities of its LGSSM to use both the information from the
past and the future when imputing missing data. In general, if x = {xobs,xun}, the unobserved
frames in xun could also appear at non-contiguous time steps, e.g. missing at random. Data can
be imputed by sampling from the joint density p(aun,aobs, z|xobs,u), and then generating xun

from aun. We factorize this distribution as

p(aun,aobs, z|xobs,u) = pγ(aun|z) pγ(z|aobs,u) p(aobs|xobs) , (6.11)

and we sample from it with ancestral sampling starting from xobs. Reading (6.11) from right to left,
a sample from p(aobs|xobs) can be approximated with the variational distribution qφ(aobs|xobs).
Then, if γ is fully known, pγ(z|aobs,u) is computed with an extension to the Kalman smoothing
algorithm to sequences with missing data, after which samples from pγ(aun|z) could be readily
drawn.

However, when doing missing data imputation the parameters γ of the LGSSM are not known
at all time steps. In the KVAE, each γt depends on all the previous encoded states, including
aun, and these need to be estimated before γ can be computed. In this paper we recursively
estimate γ in the following way. Assume that x1:t−1 is known, but not xt. We sample a1:t−1 from
qφ(a1:t−1|x1:t−1) using the VAE, and use it to compute γ1:t. The computation of γt+1 depends on
at, which is missing, and an estimate ât will be used. Such an estimate can be arrived at in two
steps. The filtered posterior distribution pγ(zt−1|a1:t−1,u1:t−1) can be computed as it depends
only on γ1:t−1, and from it, we sample

ẑt ∼ pγ(zt|a1:t−1,u1:t) =

∫
pγt(zt|zt−1,ut) pγ(zt−1|a1:t−1,u1:t−1) dzt−1 (6.12)

and sample ât from the predictive distribution of at,

ât ∼ pγ(at|a1:t−1,u1:t) =

∫
pγt(at|zt) pγ(zt|a1:t−1,u1:t) dzt ≈ pγt(at|ẑt) . (6.13)

The parameters of the LGSSM at time t+ 1 are then estimated as γt+1([a0:t−1, ât]). The same
procedure is repeated at the next time step if xt+1 is missing, otherwise at+1 is drawn from
the VAE. After the forward pass through the sequence, where we estimate γ and compute the
filtered posterior for z, the Kalman smoother’s backwards pass computes the smoothed posterior.
While the smoothed posterior distribution is not exact, as it relies on the estimate of γ obtained
during the forward pass, it improves data imputation by using information coming from the whole
sequence; see section 6.5 for an experimental illustration.

6.5 Experiments

We motivated the KVAE with an example of a bouncing ball, and use it here to demonstrate the
model’s ability to separately learn a recognition and dynamics model from video, and use it to
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impute missing data. To draw a comparison with deep variational Bayes filters (DVBFs) (Karl
et al., 2017), we apply the KVAE to (Karl et al., 2017)’s pendulum example. We further apply the
model to a number of environments with different properties to demonstrate its generalizability.
All models are trained end-to-end with stochastic gradient descent. Using the control input ut
in (6.1) we can inform the model of known quantities such as external forces, as will be done in
the pendulum experiment. In all the other experiments, we omit such information and train the
models fully unsupervised from the videos only. Further implementation details can be found
in the supplementary material (appendix 6.8) and in the Tensorflow (Abadi et al., 2015) code
released at github.com/simonkamronn/kvae.

6.5.1 Bouncing ball

We simulate 5000 sequences of 20 time steps each of a ball moving in a two-dimensional box,
where each video frame is a 32x32 binary image. A video sequence is visualised as a single image
in figure 6.4d, with the ball’s darkening color reflecting the incremental frame index. In this
set-up the initial position and velocity are randomly sampled. No forces are applied to the ball,
except for the fully elastic collisions with the walls. The minimum number of latent dimensions
that the KVAE requires to model the ball’s dynamics are at ∈ R2 and zt ∈ R4, as at the very
least the ball’s position in the box’s 2d plane has to be encoded in at, and zt has to encode the
ball’s position and velocity. The model’s flexibility increases with more latent dimensions, but we
choose these settings for the sake of interpretable visualisations. The dynamics parameter network
uses K = 3 to interpolate three modes, a constant velocity, and two non-linear interactions with
the horizontal and vertical walls.

We compare the generation and imputation performance of the KVAE with two recurrent neural
network (RNN) models that are based on the same auto-encoding (AE) architecture as the KVAE
and are modifications of methods from the literature to be better suited to the bouncing ball
experiments.2 In the AE-RNN, inspired by the architecture from (Srivastava et al., 2015), a
pretrained convolutional auto-encoder, identical to the one used for the KVAE, feeds the encodings
to an LSTM network (Hochreiter and Schmidhuber, 1997). During training the LSTM predicts
the next encoding in the sequence and during generation we use the previous output as input
to the current step. For data imputation the LSTM either receives the previous output or, if
available, the encoding of the observed frame (similarly to filtering in the KVAE). The VAE-RNN
is identical to the AE-RNN except that uses a VAE instead of an AE, similarly to the model
from (Chung et al., 2015).

Figure 6.3a shows how well missing frames are imputed in terms of the average fraction of
incorrectly guessed pixels. In it, the first 4 frames are observed (to initialize the models) after
which the next 16 frames are dropped at random with varying probabilities. We then impute the
missing frames by doing filtering and smoothing with the KVAE. We see in figure 6.3a that it is
beneficial to utilize information from the whole sequence (even the future observed frames), and
a KVAE with smoothing outperforms all competing methods. Notice that dropout probability
1 corresponds to pure generation from the models. Figure 6.3b repeats this experiment, but
makes it more challenging by removing an increasing number of consecutive frames from the

2We also experimented with the SRNN model from (Fraccaro et al., 2016c) as it can do smoothing. However,
the model is probably too complex for the task in hand, and we could not make it learn good dynamics.

https://github.com/simonkamronn/kvae
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(a) Frames xt missing completely at random.
(b) Frames xt missing in the middle of the se-

quence.

(c) Comparison of encoded (ground truth), generated and smoothed trajectories of a KVAE in the latent
space a. The black squares illustrate observed samples and the hexagons indicate the initial state.
Notice that the at’s lie on a manifold that can be rotated and stretched to align with the frames of
the video.

Figure 6.3: Missing data imputation results.

middle of the sequence (T = 20). In this case the ability to encode information coming from the
future into the posterior distribution is highly beneficial, and smoothing imputes frames much
better than the other methods. Figure 6.3c graphically illustrates figure 6.3b. We plot three
trajectories over at-encodings. The generated trajectories were obtained after initializing the
KVAE model with 4 initial frames, while the smoothed trajectories also incorporated encodings
from the last 4 frames of the sequence. The encoded trajectories were obtained with no missing
data, and are therefore considered as ground truth. In the first three plots in figure 6.3c, we
see that the backwards recursion of the Kalman smoother corrects the trajectory obtained with
generation in the forward pass. However, in the fourth plot, the poor trajectory that is obtained
during the forward generation step, makes smoothing unable to follow the ground truth.

The smoothing capabilities of KVAEs make it also possible to train it with up to 40% of missing
data with minor losses in performance (appendix 6.10 in the supplementary material). Links
to videos of the imputation results and long-term generation from the models can be found in
appendix 6.9 and at sites.google.com/view/kvae.

Understanding the dynamics parameter network. In our experiments the dynamics
parameter network αt = αt(a0:t−1) is an LSTM network, but we could also parameterize it
with any differentiable function of a0:t−1 (see appendix 6.11 in the supplementary material for a
comparison of various architectures). When using a multi-layer perceptron (MLP) that depends
on the previous encoding as mixture network, i.e. αt = αt(at−1), figure 6.4 illustrates how the
network chooses the mixture of learned dynamics. We see that the model has correctly learned

https://sites.google.com/view/kvae
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(a) k = 1 (b) k = 2 (c) k = 3 (d) Reconstruction of x

Figure 6.4: A visualisation of the dynamics parameter network α(k)
t (at−1) for K = 3, as a function

of at−1. The three α(k)
t ’s sum to one at every point in the encoded space. The greyscale

backgrounds in a) to c) correspond to the intensity of the weights α(k)
t , with white indicating

a weight of one in the dynamics parameter network’s output. Overlaid on them is the full
latent encoding a. d) shows the reconstructed frames of the video as one image.

Model Test ELBO

KVAE (CNN) 810.08
KVAE (MLP) 807.02

DVBF 798.56
DMM 784.70

Table 6.1: Pendulum experiment.

to choose a transition that maintains a constant velocity in the center (k = 1), reverses the
horizontal velocity when in proximity of the left and right wall (k = 2), reverses the vertical
velocity when close to the top and bottom (k = 3).

6.5.2 Pendulum experiment

We test the KVAE on the experiment of a dynamic torque-controlled pendulum used in (Karl
et al., 2017). Training, validation and test set are formed by 500 sequences of 15 frames of 16x16
pixels. We use a KVAE with at ∈ R2, zt ∈ R3 and K = 2, and try two different encoder-decoder
architectures for the VAE, one using a MLP and one using a convolutional neural network (CNN).
We compare the performaces of the KVAE to DVBFs (Karl et al., 2017) and deep Markov models3

(DMM) (Krishnan et al., 2017), non-linear SSMs parameterized by deep neural networks whose
intractable posterior distribution is approximated with an inference network. In table 6.1 we see
that the KVAE outperforms both models in terms of ELBO on a test set, showing that for the
task in hand it is preferable to use a model with simpler dynamics but exact posterior inference.

3Deep Markov models were previously referred to as deep Kalman filters.
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(a) Irregular polygon. (b) Box with gravity. (c) Pong-like environment.

Figure 6.5: Generations from the KVAE trained on different environments. The videos are shown as
single images, with color intensity representing the incremental sequence index t. In the
simulation that resembles Atari’s Pong game, the movement of the two paddles (left and
right) is also visible.

6.5.3 Other environments

To test how well the KVAE adapts to different environments, we trained it end-to-end on videos
of (i) a ball bouncing between walls that form an irregular polygon, (ii) a ball bouncing in a box
and subject to gravity, (iii) a Pong-like environment where the paddles follow the vertical position
of the ball to make it stay in the frame at all times. Figure 6.5 shows that the KVAE learns the
dynamics of all three environments, and generates realistic-looking trajectories. We repeat the
imputation experiments of figures 6.3a and 6.3b for these environments in the supplementary
material (appendix 6.12), where we see that KVAEs outperform alternative models.

6.6 Related work

Recent progress in unsupervised learning of high dimensional sequences is found in a plethora
of both deterministic and probabilistic generative models. The VAE framework is a common
work-horse in the stable of probabilistic inference methods, and it is extended to the temporal
setting by (Archer et al., 2015; Chung et al., 2015; Fraccaro et al., 2016c; Karl et al., 2017;
Krishnan et al., 2017). In particular, deep neural networks can parameterize the transition and
emission distributions of different variants of deep state-space models (Fraccaro et al., 2016c; Karl
et al., 2017; Krishnan et al., 2017). In these extensions, inference networks define a variational
approximation to the intractable posterior distribution of the latent states at each time step. For
the tasks in section 6.5, it is preferable to use the KVAE’s simpler temporal model with an exact
(conditional) posterior distribution than a highly non-linear model where the posterior needs to
be approximated. A different combination of VAEs and probabilistic graphical models has been
explored in (Johnson et al., 2016), which defines a general class of models where inference is
performed with message passing algorithms that use deep neural networks to map the observations
to conjugate graphical model potentials.

In classical non-linear extensions of the LGSSM like the extended Kalman filter and in the
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locally-linear dynamics of (Karl et al., 2017; Watter et al., 2015), the transition matrices at time
t have a non-linear dependence on zt−1. The KVAE’s approach is different: by introducing the
latent encodings at and making γt depend on a1:t−1, the linear dependency between consecutive
states of z is preserved, so that the exact smoothed posterior can be computed given a, and used
to perform missing data imputation. LGSSM with dynamic parameterization have been used
for large-scale demand forecasting in (Seeger et al., 2016). (Linderman et al., 2017) introduces
recurrent switching linear dynamical systems, that combine deep learning techniques and switching
Kalman filters (Murphy, 1998) to model low-dimensional time series. (Haarnoja et al., 2016)
introduces a discriminative approach to estimate the low-dimensional state of a LGSSM from input
images. The resulting model is reminiscent of a KVAE with no decoding step, and is therefore
not suited for unsupervised learning and video generation. Recent work in the non-sequential
setting has focused on disentangling basic visual concepts in an image (Higgins et al., 2017a).
(Gao et al., 2016) models neural activity by finding a non-linear embedding of a neural time series
into a LGSSM.

Great strides have been made in the reinforcement learning community to model how environments
evolve in response to action (Chiappa et al., 2017; Oh et al., 2015; Patraucean et al., 2015; Sun
et al., 2016; Wahlström et al., 2015). In similar spirit to this paper, (Wahlström et al., 2015)
extracts a latent representation from a PCA representation of the frames where controls can be
applied. (Chiappa et al., 2017) introduces action-conditional dynamics parameterized with LSTMs
and, as for the KVAE, a computationally efficient procedure to make long term predictions without
generating high dimensional images at each time step. As autoregressive models, (Srivastava
et al., 2015) develops a sequence to sequence model of video representations that uses LSTMs
to define both the encoder and the decoder. (Finn et al., 2016) develops an action-conditioned
video prediction model of the motion of a robot arm using convolutional LSTMs that models the
change in pixel values between two consecutive frames.

While the focus in this work is to define a generative model for high dimensional videos of simple
physical systems, several recent works have combined physical models of the world with deep
learning to learn the dynamics of objects in more complex but low-dimensional environments
(Battaglia et al., 2016; Chang et al., 2017; Fragkiadaki et al., 2016; Wu et al., 2015).

6.7 Conclusion

The KVAE, a model for unsupervised learning of high-dimensional videos, was introduced in this
paper. It disentangles an object’s latent representation at from a latent state zt that describes
its dynamics, and can be learned end-to-end from raw video. Because the exact (conditional)
smoothed posterior distribution over the states of the LGSSM can be computed, one generally
sees a marked improvement in inference and missing data imputation over methods that don’t
have this property. A desirable property of disentangling the two latent representations is that
temporal reasoning, and possibly planning, could be done in the latent space. As a proof of
concept, we have been deliberate in focussing our exposition to videos of static worlds that contain
a few moving objects, and leave extensions of the model to real world videos or sequences coming
from an agent exploring its environment to future work.
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Supplementary material

6.8 Experimental details

We will describe here some of the most important experimental details. The rest of the details
can be found in the code at github.com/simonkamronn/kvae.

Data generation. All the videos were generated using the physics engine Pymunk. We
generated 5000 videos for training and 1000 for testing.

Encoder/Decoder architecture for the KVAE. As we only use image-based observations,
the encoder is fixed to a three layer convolutional neural network with 32 units in each layer,
kernel-size of 3x3, stride of 2, and ReLU activations. The decoder is an equally sized network
using the Sub-Pixel(Shi et al., 2016) procedure for deconvolution. In the pendulum experiment
however we also test MLPs.

Optimization. As optimizer we use ADAM (Kingma and Ba, 2014) with an initial learning
rate of 0.007 and an exponential decay scheme with a rate of 0.85 every 20 epochs. Training one
epoch takes 55 seconds on an NVIDIA Titan X and the model converges in roughly 80 epochs.

Training tricks for end-to-end learning. The biggest challenge of this optimization problem
is how to avoid poor local minima, for example where all the focus is given to the reconstruction
term, at the expense of the prior dynamics given by the LGSSM. To achieve a quick convergence
in all the experiments we found it helpful to

• downweight the reconstruction term from of VAEs during training, that is scaled by 0.3.
By doing this, we can in fact help the model to focus on learning the temporal dynamics.

• learn for the first few epochs only the the VAE parameters θ and φ and the globally learned
matrices A(k), B(k) and C(k), but not the parameters of the dynamics parameter network
αt(a0:t−1). After this phase, all parameters are learned jointly. This allows the model to
first learn good VAE embeddings and the scale of the prior, and then learn how to utilize
the K different dynamics.

Choice of hyperparameters for the LGSSM. In most of the experiments we used at ∈ R2,
zt ∈ R4 and K = 3. In the gravity experiments we used however zt ∈ R5 as the model has no
controls applied to it and needs to be able to learn a bias term due to the presence of the external
force of gravity. The polygon experiments uses K = 7 as it needs to learn more complex dynamics.
In general, we did not find difficult to tune the parameters of the KVAE, as the model can learn
to prune unused components (if flexible enough).

https://github.com/simonkamronn/kvae
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6.9 Videos

Videos are generated from all models by initializing with 4 frames and then sampling. The
filtering and smoothing versions are allowed to observe part of the sequence depending on the
masking scheme. All the filtering and smoothing videos are generated from sequences applied
with a random mask with a masking probability of 80% (as in figure 6.3a) except for the videos
with the suffix consecutive in which only the first and last 4 frames are observed (as in figure
6.3b). Only the KVAE models have smoothing videos. For the bouncing ball experiment (named
box in the attached folder), we also show the videos from a model trained with 40% missing data.

In most videos the black ball is the ground truth, and the red is the one generated from the
model, except for the ones marked long_generation in which the true sequence is not shown.

Videos are available from Google Drive and the website sites.google.com/view/kvae.

6.10 Training with missing data.

The smoothed posterior described in section 6.4 can also be used to train the KVAE with missing
data. In this case, we only need to modify the ELBO by masking the contribution of the missing
data points in the joint probability distribution and variational approximation:

p(x,a, z,u) = p(z1)
T∏
t=2

pγt(zt|zt−1,ut)
T∏
t=1

pγt(at|zt)It
T∏
t=1

pθ(xt|at)It

qφ(a|x) =
T∏
t=1

qφ(at|xt)It ,

where It is 0 if the data point is missing, 1 otherwise. Figure 6.6 illustrates a slight degradation
in performance when training with respectively 30% and 40% missing data but, remarkably, the
accuracy is still better when using smoothing in these conditions than with filtering with all
training data available.

6.11 Dynamics parameter network architecture

As the α-network governs the non-linear dynamics, it has a significant impact on the modelling
capabilities. Here we list the architectural choices considered:

• MLP with two hidden layers.

• Recurrent Neural Networks with LSTM units.

• ’First in, first out memory’ (FIFO) MLP with access to 5 time steps.

https://drive.google.com/open?id=0B7BmG5ubHI3UeDNLbVVXWDRVUnM
https://sites.google.com/view/kvae
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(a) (b)

Figure 6.6: Training with missing data

Figure 6.7: Comparison of modelling choices wrt. the α-network



96 A Disentangled Recognition and Nonlinear Dynamics Model for Unsupervised Learning

In all cases, we can also model α as an (approximate) discrete random variable using the the
Concrete distribution (Maddison et al., 2017b; Jang et al., 2016). In this case we can recover an
approximation to the switching Kalman filter(Murphy, 1998).

In figure 6.7 the different choices are tested against each other on the bouncing ball data. In this
case all the alternative choices result in poorer performances than the LSTM chosen for all the
other experiments. We believe that LSTMs are able to better model the discretization errors
coming from the collisions and the 32x32 rendering of the trajectories computed by the physics
engine.

6.12 Imputation in all environments
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(a) Bouncing ball - Frames xt missing randomly.
(b) Bouncing ball - Frames xt missing in the mid-

dle

(c) Gravity - Frames xt missing randomly. (d) Gravity - Frames xt missing in the middle

(e) Polygon - Frames xt missing randomly. (f) Polygon - Frames xt missing in the middle

(g) Pong - Frames xt missing randomly. (h) Pong - Frames xt missing in the middle

Figure 6.8: Imputation results for all environments
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Abstract: In model-based reinforcement learning, generative and temporal models of
environments can be leveraged to boost agent performance, either by tuning the agent’s
representations during training or via use as part of an explicit planning mechanism.
However, their application in practice has been limited to simplistic environments, due
to the difficulty of training such models in larger, potentially partially-observed and 3D
environments. In this work we introduce a novel action-conditioned generative model of such
challenging environments. The model features a non-parametric spatial memory system in
which we store learned, disentangled representations of the environment. Low-dimensional
spatial updates are computed using a state-space model that makes use of knowledge on the
prior dynamics of the moving agent, and high-dimensional visual observations are modelled
with a Variational Auto-Encoder. The result is a scalable architecture capable of performing
coherent predictions over hundreds of time steps across a range of partially observed 2D
and 3D environments.
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7.1 Introduction

Consider a setup in which an agent walks and observes an environment (e.g., a three-dimensional
maze) for hundreds of time steps, and is then asked to predict subsequent observations given a
sequence of actions. This is a challenging task, as it requires the ability to first remember the
visual observations and the position in which they were observed in the environment, and secondly
to predict where a possibly long sequence of actions would bring the agent in the environment.
Building models that can solve this problem can be useful for model-based reinforcement learning
involving spatial tasks that require long-term memories and other spatial downstream goals
(Sutton, 1990; Deisenroth and Rasmussen, 2011; Levine and Abbeel, 2014; Watter et al., 2015;
Wahlström et al., 2015; Lenz et al., 2015; Higgins et al., 2017b; Finn and Levine, 2017). This
requires however agents that are able to remember the past over hundreds of steps, that know
both where they are in the environment and how each action changes their position, and that
can coherently predict hundreds of steps into the future. Therefore the main focus of this work
is to develop an action-conditioned generative model that is able to memorize all the required
information while exploring the environment and successively use it in the prediction phase for
long-term generation of high-dimensional visual observations.

Recently, several powerful generative models for sequential data have been proposed in a wide
range of applications, such as modelling speech, handwriting, polyphonic music and videos (Chung
et al., 2015; Fraccaro et al., 2016c; Oh et al., 2015; Chiappa et al., 2017). They build on recurrent
neural architectures such as Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber,
1997) or Gated Recurrent Units (GRU) (Chung et al., 2014), that use an internal state vector
to perform computations and store the long-term information needed when making predictions.
Since the number of parameters in these models scales quadratically with the dimensionality of
the state vector, they are not suitable for applications that require high memory capacity, such as
the one considered in this paper. The high dimensional state vector needed to be able to memorize
the hundreds of time steps in which the agent has visited the whole environment, make these
models in practice both very slow and hard to train. An alternative approach is to use an external
memory architecture, for storing of large amount of information while drastically reducing the
number of parameters with respect to models with similar memory capacity that build on LSTMs
or GRUs. Gemici et al., (2017) present a general architecture for generative temporal models
with external memory, and test four different types of memories that are dynamically updated
at each time step (Graves et al., 2014; Graves et al., 2016; Santoro et al., 2016). They focus on
differentiable addressing mechanisms for memory storage and retrieval (soft-attention), that are
based on deep neural networks that learn to write information to the memory and read from
it. While this approach is very general and can be used to model complex long-term temporal
dependencies in a wide range of applications, it has not been successful in modeling the data
coming from an agent freely moving in a 3d maze, even for a single room [private communications
with the authors of (Gemici et al., 2017)].

To define a scalable model capable of exploring larger environments and coherently predicting
hundreds of time steps in the future, in this work we build a spatial memory architecture that
exploits some knowledge of the specific structure of the problem in consideration. In particular, at
each time step we split the internal latent representation of the system in to two separate vectors,
a low-dimensional one that encodes the position of the agent in the environment and a high
dimensional one that encodes what the agent is seeing. We model the low dimensional dynamics



7.2 Background 101

of the agent with a state-space model in which we encode prior information on the physical
principles that govern the agent’s movements, and learn a higher dimensional latent representation
of the visual input (the frames from the environment) with a Variational Auto-Encoder (Kingma
and Welling, 2014; Rezende et al., 2014). While exploring the environment, at each time step
we store the position of the agent and the corresponding visual information in a Differentiable
Neural Dictionary (DND) (Pritzel et al., 2017), a scalable non-parametric memory developed
for episodic control. The resulting model is able to coherently generate hundreds of time steps
into the future in simulated 3D environments, by retrieving at each time step the observations
stored in memory that were collected when passing in nearby positions during the exploration
phase. Making predictions with our model is scalable because of the efficient rollouts in a low
dimensional space made possible by the state-space assumption and the efficient retrieval of the
necessary information from DND. The proposed model can be trained end-to-end on videos with
corresponding action sequences of agents walking in an environment. Importantly, unlike the
work in (Gemici et al., 2017) we do not need to learn a complex memory addressing mechanisms,
as in our model the DND represents a non-parametric component where we store encodings of
the positions and visual information that are learned from the data in an unsupervised way.

7.2 Background

We now provide a brief overview of the building blocks for the model introduced in section 7.3,
namely variational auto-encoders, the DND memory and state-space models.

Variational auto-encoders. Variational auto-encoders (VAEs) (Kingma and Welling, 2014;
Rezende et al., 2014) define a generative model for high-dimensional data xt by introducing a latent
state zt. The joint probability distribution pθ(xt, zt) is factorized as pθ(xt, zt) = pθ(xt|zt)p(zt),
where p(zt) is the prior of the latent state and the decoder pθ(xt|zt) defines a mapping using deep
neural networks parameterized by θ from the states zt to the data xt. In a VAE, the intractable
posterior distribution over the latent states is approximated using the variational distribution
qφ(zt|xt), also known as the encoder or inference network. The parameters θ and φ of the decoder
and the encoder, respectively, are learned jointly by maximizing the Evidence Lower Bound
(ELBO) with stochastic gradient ascent.

DND memory. The Differentiable Neural Dictionary (DND) is a scalable, non-parametric
memory module first introduced in Reinforcement Learning (RL) to allow agents to store and
retrieve their experiences of an environment (Pritzel et al., 2017). The write operation consists of
inserting (key, value) pairs into the memory; similarly to a dictionary, this associates a value to
each key. Given a query key, we can then read from the memory by finding among the keys stored
in the DND the nearest neighbours to the query key and returning the corresponding values. The
DND can be used in applications that require very large memories, since the nearest-neighbour
search can be efficiently approximated using space-partitioning data structures, such as kd-trees
(Bentley, 1975).

State-space models. State-space models (SSM) are a class of probabilistic graphical models
widely used in the temporal setting to model sequences of vectors z1:T = [z1, .., zT ] conditioned
on some actions a1:T = [a1, ..,aT ]. SSMs introduce at each time step a continuous stochastic
variable st, used as a latent representation of the state of the system. The temporal dynamics of
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Figure 7.1: Generative Temporal Model with Spatial Memory

the system are described by the transition density p(st|st−1,at) of the SSM, that defines how to
update the state at time t given the previous state st−1 and the current action at. The output
variable zt depends on the state st through the emission density p(zt|st).

7.3 Model

An important component of model-based reinforcement learning is the ability to plan many steps
ahead in time leveraging previous experiences (Sutton, 1990; Racanière et al., 2017). This requires
agents that can remember the past and use it to predict what may happen in the future given
certain actions. With this purpose in mind, we define an action-conditioned generative model
with memory, that can be used within RL agents for model-based planning.

The input of our model consists of T -step videos with corresponding action sequences, generated
by an agent acting in an environment. We split each sequence of T time steps into two parts,
corresponding to two different model phases:

1. Memorization phase. For t = 1, .., τ , the model receives at each time step a frame xt and
action at (e.g. move forwards/backwards, rotate left/right) that led to it. In this phase, the
model has to store in memory all the information needed in the following prediction phase.
During this phase the agent sees most of the environment (but from a restricted set of
viewpoints), in order to give the model sufficient information to make accurate predictions
in the subsequent phase.

2. Prediction phase. For t = τ + 1, .., T , the model receives the actions aτ+1:T that move the
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data-generating agent across the previously explored environment (although perhaps viewed
from a different angle) and needs to predict the observations xτ+1:T using the information
about the past that is stored in the memory.

Storing what the agent sees at each time step is not sufficient: in order to retrieve the correct
information from memory when returning to the same location during the prediction phase, we
also need to store where the agent is. The location of the agent is a latent variable that can be
inferred given the actions as explained in the rest of this section.

As shown in Figure 7.1a, in a Generative Temporal Model with Spatial Memory (GTM-SM) we
introduce two sets of latent variables that disentangle visual and dynamics information, similarly
to (Fraccaro et al., 2017). At each time step we have a VAE whose latent state zt is an encoding
of the frame of the video and therefore captures the visual information. The priors of the
VAEs are temporally dependent through their dependence on the states st of the SSM, a latent
representation of the location of the agent in the environment. The transition density of the SSM
is used to include prior knowledge on the environment dynamics, i.e. the underlying physics.

During the initial memorization phase, the GTM-SM infers the states s1:τ of the agent (i.e. the
position) and the frame encodings z1:τ , and stores these (si, zi) pairs as (key, value) in the DND
memory. Probabilistically, we can view this as inserting an approximation of the intractable the
posterior p(s1:τ , z1:τ |x1:τ ,a1:τ ) into the DND; see Section 7.3.3 for details. As the latent variables
are stochastic, in practice we store in memory the sufficient statistics of the distribution (e.g. the
mean and variance in the case of Gaussian variables). To keep the notation simple, we will refer
to the information in the DND by the name of the random variable (as done in Figure 7.1b),
rather than introducing a new symbol for the sufficient statistics. An alternative is to insert one
or more samples from the distribution into the memory instead, but this would introduce some
sampling noise.

In the subsequent prediction phase, we forward-generate from the SSM using the actions aτ+1:T

to predict sτ+1:T , and we use the VAE’s generative model to generate the frames xτ+1:T given the
predicted states and the information from the first τ time steps stored in the DND memory; see
Section 7.3.1 for details. In our experiments, a low-dimensional state vector st (2- or 3-dimensional)
suffices. Because of this, we can perform efficient rollouts in latent space without the need to
generate high-dimensional frames at each time step as in autoregressive models (Oh et al., 2015;
Chiappa et al., 2017; Gemici et al., 2017). Also, thanks to the scalability properties of the DND
memory, we can efficiently explore very large environments.

There are three key components that define the GTM-SM and that will be introduced in the
following, namely the generative model, the inference network, and the past encoder. As we will
see, these components share many parameters.

7.3.1 Generative model

For brevity, we write the observations and actions in the memorization phase as v = {x1:τ ,a1:τ}
and we write the observations and actions in the prediction phase as x = xτ+1:T and a = aτ+1:T

respectively. Letting θ be the parameters of the generative model, we model pθ(x|a,v) as follows.



104 Generative Temporal Models with Spatial Memory

We introduce two sets of latent variables: the frame encodings z = zτ+1:T and the SSM states
s = sτ+1:T , and define the joint probability density pθ(x, z, s|a,v) following the factorization
shown in Figure 7.1a:

pθ(x, z, s|a,v) =
T∏

t=τ+1

pθ(xt|zt)pθ(zt|st,m)pθ(st|st−1,at), (7.1)

where pθ(st|st−1,at) is a Gaussian SSM transition probability density and pθ(xt|zt) is the VAE
decoder (Bernoulli or Gaussian distributed, depending on the data). pθ(zt|st,m) can be seen
as the prior of the VAE, that is conditioned at each time step on the current state st and the
content of the DND memory m = {s1:τ , z1:τ} = PastEncoder(v) as illustrated in Figure 7.1b (see
Section 7.3.3 for details on the past encoder). Its sufficient statistics are computed as follows.
First, we calculate the distances di = d(si, st), i = 1, .., τ , between st and all the states si in the
DND memory. We then retrieve from the memory the K nearest states and the corresponding
frame encodings, thus forming a set of triplets {(d(k), s(k), z(k)), k = 1, ..,K} that will be used
as conditioning variables when computing the parameters of the VAE prior pθ(zt|st,m). Using
low-dimensional st and prior knowledge of the environment dynamics when defining pθ(st|st−1,at),
we can make the GTM-SM learn to use st to represent its position in the environment. At each
time step the model will then retrieve from the memory what it has seen when it was previously
close to the same location, and use this information to generate the current frame xt. The exact
form of the VAE prior pθ(zt|st,m) and transition model pθ(st|st−1,at) is environment-dependent,
and will be therefore introduced separately for each experiment in Section 7.4.

7.3.2 Inference network

Due to the non-linearities in the VAE and the fact that pθ(zt|st,m) depends on the DND memory,
the posterior distribution pθ(z, s|x,a,v) of the GTM-SM is intractable. We therefore introduce a
variational approximation qφ(z, s|x,a) that factorizes as

qφ(z, s|x,a) = qφ(z|x)pθ(s|a)

=
T∏

t=τ+1

qφ(zt|xt)pθ(st|st−1,at) . (7.2)

A graphical representation of the inference network of the GTM-SM is shown in Figure 7.1c.
qφ(zt|xt) is an inference network that outputs the mean and variance of a Gaussian distribution,
as typically done in VAEs. In (7.2) we then use the SSM transition probabilities, and we are
therefore assuming that the GTM-SM can learn the prior dynamics of the moving agents accurately
enough to infer the position of the agent given the sequence of actions. Notice that without this
assumption it would be impossible to perform long term generation with the model during the
prediction phase. In this phase, we can in fact only rely on the generative model, and not on the
inference network as we do not know what the agent is seeing at each time step. To relax this
assumption, the inference network could be extended to make use of the information stored in
memory, for example by using landmark information when inferring the current position of the
agent. This is discussed more in detail in Appendix 7.10 in the supplementary material, together
with an initial experiment to assess the feasibility of the proposed method.
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7.3.3 Past encoder

The past encoder is used during the memorization phase to extract the information to store in
the DND memory. It creates a mapping from st to zt that is exploited at times t = τ + 1 : T in
the generative model. During the memorization phase, at each time step we store in the DND
the sufficient statistics of the inferred states st and visual information zt, t = 1, .., τ , obtained
from an approximation to the smoothed posterior pθ(zt, st|v). We first factorize this distribution
as pθ(zt, st|v) = pθ(st|v)pθ(zt|v) and only condition on the information up to time t (i.e. we are
doing filtering instead of smoothing): pθ(zt, st|v) ≈ pθ(st|v1:t)pθ(zt|v1:t), where v1:t = {x1:t,a1:t}
Second, we approximate each of the terms using the inference network, without introducing any
additional parameters in the model. Using the VAE encoder, we have pθ(zt|v1:t) ≈ qφ(zt|xt). We
then assume pθ(st|v1:t) ≈ pθ(st|v1:t−1,at) with

pθ(st|v1:t−1,at) =

∫
pθ(st|st−1,at)p?θ(st−1) dst−1 ,

p?θ(st) =

∫
pθ(st|st−1,at)p?θ(st−1) dst−1 .

p?θ(st) is the marginal distribution of st obtained by integrating over the past states (samples
from p?θ(st), as needed in the ELBO, are easily obtained with ancestral sampling).

7.3.4 Training

We learn the parameters θ and φ of the GTM-SM by maximizing the ELBO, a lower bound
to the log-likelihood log pθ(x|a,v) obtained using Jensen’s inequality and the inference network
introduced in Section 7.3.2:

log pθ(x|a,v) = log

∫
pθ(x, z, s|a,v) dz ds

≥ Eqφ(z,s|x,a,v)
[
log

pθ(x, z, s|a,v)

qφ(z, s|x,a,v)

]
= F(θ, φ) .

Exploiting the temporal factorization of both the joint distribution pθ(x, z, s|a,v) and the
variational approximation qφ(z, s|x,a,v), we obtain after some calculations:

F(θ, φ) =
T∑

t=τ+1

Eqφ(zt|xt) [log pθ(xt|zt)]− Ep?θ(st) [KL[qφ(zt|xt)||pθ(zt|st,m)]] .

The ELBO is then formed by two terms: a reconstruction term and a KL divergence for the
VAE. F(θ, φ) can be maximized with stochastic gradient ascent, approximating the intractable
expectations with Monte Carlo integration with a single sample and using the reparameterization
trick to obtain low-variance gradients (Kingma and Welling, 2014; Rezende et al., 2014).

7.4 Experiments

We test the memorization and long-term generation capabilities of the GTM-SM on several
2D and 3D environments of increasing complexity. We use videos with action data from RL
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Figure 7.2: Image navigation experiment

agents walking in the environments, that are split so that both the memorization and prediction
phase are hundreds of time steps. Experimental details can be found in Appendix 7.7 in the
supplementary material.

7.4.1 Image navigation experiment

In this experiment the data-generating agent walks on top of an image and observes a cropped
version of the image (centered at the agent’s position). As illustrated in Figure 7.2a, the 2D
environment is a 32x32 image from the CelebA dataset (Liu et al., 2015) and the agent sees
an 8x8 crop (the yellow square in the figure). There are five possible actions: move one step
up/down/left/right or stay still. At each time step we sample a random action, but to favor
exploring the whole environment the action is repeated in the subsequent time steps. The number
of repetitions is sampled from a Poisson distribution. The agent cannot walk outside of the
image: the “move right” action, for example, does not change the position of an agent on the right
edge of the image. We can interpret this as an environment with walls. The agent walks on the
image while adding information in the DND memory for τ = 256 time steps. We experimentally
determined that this suffices to ensure that the agent usually reaches most positions in the
environment. During training the prediction phase has 32 time steps; during testing we instead
generate from the model for 256 time steps, so that T = 512. In each of the two dimensions,
there are nine possible positions (the crops can overlap). This is illustrated in Figure 7.2b, which
shows the ground truth positions that the agent has visited in the 256 steps of the memorization
phase of a test sequence.

We use a 2-dimensional state space that the GTM-SM learns to use to represent the position of
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the agent. With no walls in the environment all possible transitions are linear, and they can be
modelled as st = st−1 +Mat + εt with εt ∼ N (0, r2I). In all experiments we use small values
for r2, that make the transitions close to being deterministic. The transition matrix M can be
learned from the data, and describes how to update the state given each of the 5 actions (Mat is
the displacement at time t). The environment in our experiment has walls however, and we need
the model to be able to learn not to move with actions that would make it hit a wall. We do
this by multiplying the displacement by a neural network σd that receives as input the projected
position of the agent after taking the action and outputs a value between 0 and 1, and that can
therefore learn to cancel out any displacements that would bring the agent out of the environment.
These non-linear transitions are therefore modelled as

st = st−1 +Mat · σd(st−1 +Mat) + εt . (7.3)

The VAE prior used in this experiments is obtained by creating a mixture distribution from the
sufficient statistics of the frame encodings retrieved from the DND memory, whose weights are
inversely proportional to the squared distances d(k) between st and the retrieved elements s

(k)
k :

pθ(zt|st,m) =

K∑
k=1

wkN (zt|z(k)) ; wk ∝
1

d(k)
2

+ δ

δ = 10−4 is added for numerical stability (Pritzel et al., 2017). In the DND memory we store
sufficient statistics, but in this experiment we use the Euclidean distance between means in the
nearest-neighbor search. (Alternatively, we could use the KL divergence between the distributions).

In Figure 7.2c we show an example of the states inferred by the model for a test sequence. We see
that the model has learned the correct transitions, in a state space that is rotated and stretched
with respect to the ground truth one. To test the memorization and prediction capabilities of the
GTM-SM, Figure 7.2d shows a comparison between the ground truth frames of the video and
the predicted ones during the prediction phase. The model produces almost perfect predictions,
even after more than 200 generation steps (t = 471). This shows that it has learned to store all
relevant information in the DND, as well as retrieve all relevant information from it. Videos of
long-term generations from the model are available in the supplementary material, see Appendix
7.8 for details. The state-of-the-art generative temporal models with memory introduced in
(Gemici et al., 2017), are not able to capture the spatial structure of large environments as in the
GTM-SM, and would therefore struggle to coherently generate hundreds of time steps into the
future. The MNIST maze experiment in (Gemici et al., 2017) can be seen as a simpler version
of the image navigation experiment presented above, with agents moving on a 4x4 grid, linear
transitions and 25-step sequences.

7.4.2 Labyrinth experiments

We now show that the GTM-SM is able to remember the past and perform spatio-temporally
coherent generations over hundreds of time steps in simulated 3D environments. We use the
Labyrinth environment (Mnih et al., 2016; Beattie et al., 2016), procedurally-generated 3D mazes
with random textures, objects and wall configurations. There are eight possible actions that can
both move and rotate the agent in the maze, and we observe images from a first-person point of
view. Labyrinth can be seen as a 3D extension of the image navigation experiments in Section
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Figure 7.3: Labyrinth experiment

7.4.1, but in this case the task is much harder for two main reasons that will be tackled below: (1)
dealing with rotations and (2) projective transformations in a partially observable environment.

First, the state of the agent is no longer only described by the position, but also from the direction
in which the agent is looking and moving. We need to take into account two different coordinate
systems, a global one that coincides with the state-space (s-space), and one that is fixed with the
agent (agent-space). In the image navigation experiments these coordinate systems coincided.
The actions act in agent-space, e.g. a “move right” action will make the agent go right in its
reference frame, but depending on its orientation this could correspond to a move to the left in
s-space. To deal with this issues we can introduce a rotation matrix R in the state transition
equation, that translates a displacement Mat in agent-space to a displacements RMat in s-space.
More in detail, we consider a 3-dimensional state-space, and define the state transition equations
as

st = st−1 +R(s
(3)
t−1)Mat + εt (7.4)

with s
(3)
t−1 being the 3rd component of the vector st−1 and

R(s
(3)
t−1) =

cos(s
(3)
t−1) − sin(s

(3)
t−1) 0

sin(s
(3)
t−1) cos(s

(3)
t−1) 0

0 0 1

 .

As for the image navigation experiment, we learn the parameters ofM . While we do not explicitly
tell the GTM-SM to use the first two component of the state vector as a position and the third
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one as an angle, the model will learn to use them in this way in order to maximize the ELBO. In
the nearest neighbor search in the DND memory we need to take into account the periodicity of
the angle, e.g. that an agent oriented at 30◦ or 390◦ is actually looking in the same direction.
When computing distances, instead of using s

(3)
t we then use cos(s

(3)
t ) and sin(s

(3)
t ), that are

possibly passed together with the first two components of st through a linear layer that maps the
resulting vector in a learned space where we use the Euclidean distance.

The second challenge arises from the fact that, unlike the image navigation experiment where there
were a limited a number of possible positions for the agent, in the 3D labyrinth environment it is
not reasonable to assume that during the memorization phase the agent will pass in all positions
and look from them in all directions. To deal with this issue, we use as VAE prior pθ(zt|st,m)
a neural architecture that given the frames from the closest positions retrieved from the DND
memory learns to combine the different views taking into account projective transformations.
Details can be found in Appendix 7.7.2. Videos of long-term generations for these experiments
are available in the supplementary material, see Appendix 7.8 for details.

7.4.2.1 Rotating agent in Labyrinth

In the first experiment we test the abilities of the GTM-SM to learn to model rotations with
the transition model in (7.4) as well as to combine the information from different views. We use
videos with action data of an agent that does two complete rotations while standing still in the
same position. The rotational period is around 41 time steps, but we only store in memory the
first τ = 33 (approximately 300◦). We then ask the model to generate the remaining 60◦ to finish
the first rotation and a whole new rotation. From Figure 7.3a we see an example of an observation
from the test data and that the model has correctly learned to use the third component of the
state vector st to represent the orientation of the agent. In the prediction phase in Figure 7.3c,
we notice that the predictions from the model are very close to the ground truth, meaning that
the model has learned to use the memory correctly. In particular, despite the fact that the frames
from t = 33 to t = 41 were never seen during the memorization phase, the GTM-SM has learned
to combine the information from other views. Notice that this experiment can be seen as a more
challenging version of the Labyrinth rotation experiment of (Gemici et al., 2017), that used a
fully observed first rotation with a rotational period of 15 time steps.

7.4.2.2 Walking agent in Labyrinth

We now use videos of a pre-trained RL agent walking in a room and solving a scavenger hunt task.
In this case it is fundamental to extend the transition equation in (7.4) to model more carefully
the physics of the walking agent, that make the displacement at a given time step depend not
only on the current action, but also on the displacement at the previous time step. The agent is
subject to momentum and friction, so that if it is moving in a certain direction at time t− 1, it
will still continue to move a bit in the same direction even at time t, regardless of the action at.
Also, despite the momentum, the displacement of the agent cannot increase indefinitely, i.e. there
is saturation. We can model this by extending the way the displacement dt = Mat is calculated
in (7.4). To take into account momentum and friction, we first add to dt = Mat a damped
version of the displacement at the previous time step, i.e. σ(cf )� dt−1, where σ(cf ) is a learned
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vector between 0 and 1 of the same size of dt (σ is the sigmoid function and � represents the
element-wise product). To deal with saturation, we then limit the range of the displacements by
squashing them through a tanh non-linearity that is pre-multiplied by a learned vector cs. The
resulting transition model then becomes

st = st−1 +R(s
(3)
t−1) cs � tanh(σ(cf )� dt−1 +Mat)︸ ︷︷ ︸

dt

+εt

with M , cs and cf parameters to be learned. This is a very challenging task, as from only
one-hot encoded actions and the frames of the video we need to learn a complex transition model.
Moreover, due to the low resolution of the images (32x32), small variations in state-space may be
impossible to infer using only the images. To solve this, we make the reasonable assumption that
at training time the agent feels its movement, i.e. the displacements. We then add a regression
loss as an extra term to the objective function, that helps the GTM-SM to learn transition
parameters such that the estimated dt is close to its true value. Notice that the true displacements
information is only added as a target in the loss, and never passed directly into the model. The
pre-trained agent does not hit walls, therefore we do not need to handle non-linearities as in (7.3).

We let the agent walk around the room while adding information in the DND memory for τ = 150
time steps, and then predict during testing the following 150 time steps (T = 300). In Figure
7.3b, we notice that the GTM-SM is able to learn a very accurate transition model, that provides
a sufficiently good approximation of the true state even after t = 297 time steps. In Figure 7.3d
we can appreciate the memorization and long-term generation capabilities of the GTM-SM by
looking at the comparison between the true and predicted frames of the video in the end of the
prediction phase (t284:299). We also notice in the predicted frames, that the model correctly draws
the walls and the floors but fails to render the objects, probably due to difficulties in modelling
with the VAE the very diverse and complex textures that form objects in this environment. We
also tested the same trained model on longer videos of larger environments with multiple rooms
(τ = 150 and T = 450). As explained in detail in Appendix 7.9, the model is able to correctly
predict the textures of the environment even after 300 time steps.

7.5 Related work

A number of recent works have augmented deep generative models with learned external memories,
both in the static setting (Li et al., 2016; Bornschein et al., 2017) and in the temporal one (Gemici
et al., 2017). More in general, neural networks have been combined with different memories
in a wide range of tasks such as supervised learning (Graves et al., 2014; Graves et al., 2016),
reinforcement learning (Oh et al., 2016; Pritzel et al., 2017; Parisotto and Salakhutdinov, 2018),
one-shot learning (Santoro et al., 2016), question answering and language modelling (Sukhbaatar
et al., 2015; Miller et al., 2016). Each memory architecture uses different addressing mechanisms
to write or read information, that are usually chosen depending on the specific application being
considered. As discussed in the introduction, our work is closely related to (Gemici et al., 2017),
but more suitable for long-term generation for this task and more scalable thanks to the usage of
the spatial memory architecture that exploits knowledge on the dynamics of the agent and does
not require to learn a parametric memory addressing scheme.
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In the deep reinforcement learning community, several works have exploited different memory
architectures to store long term information to be used within an agent’s policy, such as in
(Zaremba and Sutskever, 2015; Oh et al., 2016). In particular, in (Gupta et al., 2017a; Gupta
et al., 2017b; Zhang et al., 2017; Parisotto and Salakhutdinov, 2018) the memory architectures
have a fixed number of slots that are spatially structured as a 2D grid, and can therefore store
information on the moving agent. Similarly to the GTM-SM, these memories are built to exploit
the spatial structure of the problem, although for the different task of constructing agents that can
learn to navigate and explore the environment, as opposed to the focus on generative modelling
of this paper. Simultaneous Localization And Mapping (SLAM) (Smith et al., 1987; Leonard and
Durrant-Whyte, 1991) is a popular technique used in robotics to estimate the position of a robot
and the map of the environment at the same time using sensor data, recently applied to deep
reinforcement learning for example in (Bhatti et al., 2016; Zhang et al., 2017). It is reminiscent to
the memorization phase of the GTM-SM, that could be therefore extended using ideas introduced
in the visual SLAM community (Taketomi et al., 2017).

7.6 Conclusion

In this work we introduced the Generative Temporal Model with Spatial Memory, an action-
conditioned generative model that uses a scalable non-parametric memory to store spatial and
visual information. Our experiments on simulated 2D and 3D environments show that the model
is able to coherently memorize and perform long-term generation. To our knowledge this is
the first published work that builds a generative model for agents walking in an environment
that, thanks to the separation of the dynamics and visual information in the DND memory,
can coherently generate for hundreds of time steps in a scalable way. Future work will focus on
exploiting these capabilities in model-based planning by integrating the GTM-SM within an RL
agent.

Supplementary material

7.7 Experimental details

The models used in all experiments are implemented in Tensorflow (Abadi et al., 2015) and use
the Adam optimizer (Kingma and Ba, 2014).

7.7.1 Image navigation experiment

The training and test data sets are procedurally generated by sampling a random trajectory in
randomly chosen images from the CelebA data set. The actions at each time steps are one-hot
encoded (vector of size 5). The memorization phase is 256 time steps, while the prediction one
has 32 time steps during training and 256 during testing.
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The VAE decoder and encoder use a 3-layered convolutional architecture to parameterize mean
and variance of 16-dimensional latent states, but we noticed in practice that for this experiment
even standard fully connected architectures perform well. In the transition model the standard
deviation of the model is r = 10−3. In the DND we retrieve the 5 nearest neighbour and use
Euclidean distances between means.

The initial learning rate is 10−3, and we anneal it linearly to 5 · 10−5 during the first 50000
updates.

7.7.2 Labyrinth experiments

The data sets used for the labyrinth experiments contain 120000 action-conditioned videos, of
which we use 100000 for training and 20000 for testing. Each video for the rotating agent
experiments contains 80 frames. To form a training sequence we select randomly 49 consecutive
frames of a video, that we split in 33 frames for the memorization phase and 16 for the prediction
one. During testing, the prediction phase has 45 time steps. For the walking agent experiment the
videos are 300 time steps. Similarly to the rotation experiment, to form a training sequence we
get consecutive sequences of 150+32 time steps (memorization and prediction phase respectively).
During testing, we use 150 frames for the prediction phase.

The transition noise of the SSM has standard deviation r = 10−2. To compute distances in the
DND we map the state vectors to

s̃t =


s
(1)
t

s
(2)
t

cos(s
(3)
t )

sin(s
(3)
t )

 ,

and optionally pass the resulting vector through a linear layer. This gives a 5-dimensional vector
in a learned manifold in which we use the Euclidean distance (in our experiments, the model
performed well even without the linear layer). In the DND we retrieve the 4 nearest neighbours.

In the VAE, we use convolutional encoder and decoder, and 64-dimensional latent state. The VAE
prior pθ(zt|st,m) used in the Labyrinth experiments is slightly more involved than the mixture
prior used in the image navigation one. We first map the data retrieved from memory {si, zi}
with a MLP to an embedding vector ht, and then combine the embedding ht with the current
state st, mapping the result to the mean and variance of the Gaussian prior

ht = f({si, zi})
pθ(zt|st,m) = N (µ(ht, st),σ(ht, st)).

The initial learning rate is set to 3 · 10−3, and we linearly anneal it to 5 · 10−5 during the first
100000 updates.
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Figure 7.4: Prediction phase for a walking agent trained on one room and tested on multiple rooms.
Time steps t396:411.

7.8 Videos of long-term generation

Videos of long-term generation from the GTM-SM for all the experiments of this paper are
available at this anonymous Google Drive link (goo.gl/RXQPTL). The videos are subdivided in
folders:

1. videos/image_navigation/ contains the videos for the experiments in Section 7.4.1.

2. videos/labyrinth_rotation/ contains the videos for the experiments in Section 7.4.2.1.

3. videos/labyrinth_walk/ contains the videos for the experiments in Section 7.4.2.2.

4. videos/labyrinth_walk_multirooms/ contains the videos for the experiments in Appendix
7.9.

In all folders, the first video corresponds to the test sequence used to produce the figures in the
paper.

7.9 Walking agent in Labyrinth (multiple rooms)

We consider the same trained model used for the results in section 7.4.2.2. In section 7.4.2.2, this
model was tested on videos of length T = 300 of an agent walking in a single room, with both
memorization and prediction phase of 150 time steps. To asses the long-term memorization and
localization capabilities of the GTM-SM, we now test it on videos of the same agent walking in
larger environments with multiple rooms. Each video is T = 450 time steps; we store 150 time
steps in memory and we predict for 300 more. As the model is trained on single rooms, we cannot
expect the VAE to correctly generate the corridors between rooms, but we can expect the model
to be able to know its position and the textures in the room (i.e. the color of the walls and of the
floor).

In Figure 7.4 we show the predictions from the model after more than 250 time steps from the
end of the memorization phase. As expected, the model fails in drawing the walls that form the
corridor between the two rooms. However, we see that the GTM-SM correctly remembers the
texture of rooms that it has previously visited and is able to predict the change in the color of
the floor in the corridor. This is better viewed looking at the videos of this experiment, available
in the folder videos/labyrinth_walk_multirooms/ in the supplementary material.

https://drive.google.com/open?id=1WLiyLRDUIMuOWtJEDIUxrTQCOOykeCE0
https://goo.gl/RXQPTL
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7.10 Inference network using landmark information

We now introduce an alternative inference network that uses the information in the DND memory
to improve inference in cases in which the SSM transition model is not powerful enough to infer
the correct position of the agent. We factorize the variational approximation qφ(z, s|x,a,v) as

qφ(z, s|x,a,v) = qφ(z|x)qφ(s|z,a,v)

=

T∏
t=τ+1

qφ(zt|xt)qφ(st|st−1,at, zt,m) .

A graphical representation of the inference network of the GTM-SM is shown in Figure 7.5.
qφ(zt|xt) is an inference network that outputs the mean and variance of a Gaussian distribution,
as typically done in VAEs. The structured variational approximation qφ(st|st−1,at, zt,m) retains
the temporal dependency among the state variables and exploits the information stored in the
memory m. We define this approximation to depend on:

1. The prior belief pθ(st|st−1,at). If at time t− 1 we were at a given position, this dependence
captures the fact that at time t we cannot be too far from it. This is the same dependence
we used in Section 7.3.2.

2. Landmark information, obtained by querying the DND memory in the reverse direction
with respect to the VAE prior, i.e., considering the frame encodings zi as keys and the
states si as values. At each time step the agent can then check whether it has already seen
the current frame encoding zt in the past, and exploit this information when computing
the inferred position of the agent. We use zt to query the reversed-DND, retrieving
triplets {(δ(k), z(k), s(k)), k = 1, ..,K ′} that are used in the computation of the parameters
of qφ(st|st−1,at, zt,m). Here, δ(k)i represents a distance in z-space.

We define qφ(st|st−1,at, zt,m) to be a Gaussian density, whose mean µq and variance σ2
q are

the outputs of a neural network that merges the sufficient statistics µp and σ2
p of the prior

pθ(st|st−1,at), and the ones of the states s
(k)
i retrieved using landmark information: µk,σ2

k, k =
1 : K ′. We assume that we stored in the DND the mean and the variance of Gaussian latent
states. The posterior mean is obtained as

µq = µp +

K′∑
k=1

βk(µk − µp) ,

where βk ∈ [0, 1] is the output of a simple neural network with input δ(k)i . The inference network
can then learn to assign a high value to βk whenever the distance in z-space is small (i.e. the
current observation is similar to a frame stored in the DND), so that the prior mean is moved in
the direction of µk. Similarly, the posterior variance can be computed starting from the prior
variance using another neural network: logσ2

q = logσ2
p +NN(δ1:K

′
i ,σ2

1:K′ ,σ
2
p).
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Figure 7.5: Inference network for the GTM-SM using landmark information. Blue arrows represent
dependencies on the reversed DND memory.

With this choice for the inference network, the ELBO of the GTM-SM becomes

F(θ, φ) =
T∑

t=τ+1

Eqφ(zt|xt) [log pθ(xt|zt)]− Eq?φ(st) [KL[qφ(zt|xt)||pθ(zt|st,m)]] +

− Eq?φ(st−1) [KL [qφ(st|st−1,at, zt,m)||pθ(st|st−1,at)]] .

with
q?φ(st) =

∫
qφ(st|st−1,at, zt,m1:t−1)q

?
φ(st−1) dst−1 .

Notice in particular the additional KL term for the SSM.

7.10.1 Image navigation with obstacles

We extend the image navigation experiments of Section 7.4.1 adding obstacles to the environment
as illustrated in Figure 7.6 (left). We use displacement information as in the Labyrinth experiment
of Section 7.4.2.2. The obstacles appear in random positions in each sequence, therefore we
cannot learn a prior transition model that captures these non-linear dynamics. However, when
doing inference the model can use its knowledge on the current frame xt (that is not available
during the prediction phase) to infer its position by exploiting landmark information.

To illustrate this we can look at the example in Figure 7.6 (right). At time t− 1, the position st−1
of the agent coincides with the red star. The agent’s position together with the corresponding
observation xt−1 (the yellow square) will be inserted in the DND memory. At time t, the agent
receives a “move left” action; the prior transition probabilities will then predict that the agent
has to move to the left (the green hexagon). Due to the presence of the obstacle however, the
agent does not move, meaning that xt will be the same as xt−1. Querying the DND in the reverse
direction the model will then know that the inferred state (the blue dot) should be the same as
the position at the previous time step that was stored in the DND (the red star).
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Figure 7.6: Image navigation experiment with obstacles. The agent (yellow square) cannot cross the
ostacle (the gray squared area).
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Chapter 8

Conclusions

8.1 Contributions

The ever-increasing availability of unlabelled sequential data is driving the development of
mathematical models and methods that can be used to analyze it in a general and scalable way.
This thesis represents a step in this direction, inspired by the recent successes in probabilistic
modelling and deep learning.

In the first part of the thesis we developed a unified framework that merges ideas from latent
variable models, state-space models and deep learning, and defined a broad class of deep latent
variable models for sequential data that are:

1. Flexible. These models can fit complex data distributions in a wide range of applications.
We achieve this by constructing probabilistic sequential models in which we use deep neural
networks to parameterize the conditional distributions that define them. Deep learning
architectures form very expressive function approximators, and allow the model to learn to
perform an automatic feature extraction that is fundamental for the models to be broadly
applicable. Also, new advancements in deep learning can be easily incorporated in this
framework.

2. Scalable. Since both the generative model and the posterior approximation are defined with
deep neural networks, we can perform end-to-end training using gradient-based optimization
of the ELBO, computing the required gradients efficiently with GPU implementations of the
back-propagation algorithm. The usage of mini-batches and amortized inference techniques
allows us to train these probabilistic models in a scalable way on very large data sets.

3. Easy to implement. These models can be implemented using existing deep learning libraries,
that use automatic differentiations techniques to automatically compute the gradients of any
differentiable architecture. Thanks to the usage of inference networks, probabilistic inference
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can be seen as a simple black-box operation, as opposed to the model-specific calculations
required by other approximate inference techniques such as mean-field variational inference
or MCMC methods.

In the second part of the thesis we further presented three papers that introduce in depth novel
models belonging to this framework. In (Fraccaro et al., 2016c, Chapter 5) we showed how we
can combine the power of RNNs in capturing long-term dependencies in the data with the ability
of DSSMs to model the uncertainty in the learned latent representation. (Fraccaro et al., 2017,
Chapter 6) then discusses how incorporating structure to the model we can learn disentangled
and more interpretable visual and dynamics representations. Finally, in (Fraccaro et al., 2018,
Chapter 7) we discussed the usage of an external memory architecture to deal with applications
that require a high memory capacity.

8.2 Open questions and future work

It is well known by researchers that every new advancement in a field comes with a new set of
open questions that are often harder to answer than the initial ones. For the sequential deep
latent variable models introduced in this thesis there are a number of open questions whose
answer would allow us to achieve a better understanding of their working principles as well as to
better exploit their modelling power. We divide them in two groups: modelling and inference
and learning.

Modelling:

• The selection of the best model parameterization to use for a given application can be
difficult. This class of models in fact inherits from its deep learning component all the
challenges related to the specification of the exact network architecture, e.g. number of
layers, units and the type of activation function to use. In particular, the choice of the
specific parameterization of the transition/emission distributions has a large impact in
terms of performances. It is then fundamental to verify if there are better default choices
that consistently perform better than the ones presented in this thesis.

• As discussed in Section 4.8, if we are not careful enough during training, often the model
tends to set all the variances to a very low value, making the model basically deterministic.
Instead of solving this issue at training time, we may be able to define architectures that
can natively better exploit the stochasticity.

• It is often difficult to understand if for a particular application it is important to model
stochasticity in the latent states, e.g. whether one should use an RNN or an SRNN. This
is part of an even broader question on which is the exact role played by the stochastic
component in such architectures. Is it really modelling uncertainty or is it just introducing
some “tailored noise” that is beneficial at training time?

• More work is needed to fully understand whether the uncertainties learned by these models
are meaningful and well calibrated.
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Inference and learning:

• In these models, we use inference networks to parameterize Gaussian variational approxi-
mations, and inherit therefore the same issues and possible solutions discussed for VAEs
in Section 2.5. More research is needed in this direction to define even better objective
functions and scalable methods to build more flexible posterior approximations.

• In this thesis we have only focused on variational methods, as they provided a scalable
way to perform approximate inference. A possible line of research is to focus on more
efficient ways to perform other approximate inference methods (such as MCMC), similarly
to the usage of the particle filters with learned importance distribution discussed in Section
4.3.2. In some cases it is in fact desirable to be able to use more computationally expensive
inference methods in order to achieve better performances.

• As discussed in Section 4.6.2, probabilistic graphical models provide a principled way to
introduce prior knowledge and structure in the model, and we can leverage existing message-
passing algorithms to perform approximate inference. A fundamental but challenging step
for the more widespread usage of such techniques is the implementation of a message-passing
library that integrates well with existing deep learning libraries.

• As always when using deep learning, training tricks can make a huge difference in terms of
final performances of the model. In Section 4.8 we have introduced some of them, but it
would be interesting to find even better ones derived from a deeper theoretical understanding
of the learning process.

The application of these model to even more complex and challenging tasks can drive the research
on many of the open questions presented above. Of particular interest is the usage of this class of
models in applications for which we know that a correct model for the uncertainty is fundamental.
This is the case for example in model-based reinforcement learning, where these models could be
used within an agent for planning and reasoning under uncertainty.
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