
A. Experimental details
The models used in all experiments are implemented in
Tensorflow (Abadi et al., 2015) and use the Adam optimizer
(Kingma & Ba, 2014).

A.1. Image navigation experiment

The training and test data sets are procedurally generated by
sampling a random trajectory in randomly chosen images
from the CelebA data set. The actions at each time steps
are one-hot encoded (vector of size 5). The memorization
phase is 256 time steps (we experimentally determined that
this suffices to ensure that the agent usually reaches most
positions in the environment), while the prediction one has
32 time steps during training and 256 during testing.

The VAE prior used in this experiment is obtained by creat-
ing a mixture distribution from the sufficient statistics of the
frame encodings retrieved from the DND memory, whose
weights are inversely proportional to the squared distances
d(k) between st and the retrieved elements s(k)k :

pθ(zt|st,m) =

K∑
k=1

wkN (zt|z(k)) ; wk ∝
1

d(k)
2
+ δ

δ = 10−4 is added for numerical stability (Pritzel et al.,
2017). In the DND memory we store sufficient statistics, but
in this experiment we use the Euclidean distance between
means in the nearest-neighbor search. (Alternatively, we
could use the KL divergence between the distributions).

The VAE decoder and encoder use a 3-layered convolu-
tional architecture to parameterize mean and variance of
16-dimensional latent states, but we noticed in practice that
for this experiment even standard fully connected architec-
tures perform well. In the transition model the standard
deviation of the model is r = 10−3. In the DND we re-
trieve the 5 nearest neighbour and use Euclidean distances
between means.

The initial learning rate is 10−3, and we anneal it linearly
to 5 · 10−5 during the first 50000 updates.

A.2. Labyrinth experiments

The data sets used for the labyrinth experiments contain
120000 action-conditioned videos, of which we use 100000
for training and 20000 for testing. Each video for the ro-
tating agent experiments contains 80 frames. To form a
training sequence we select randomly 49 consecutive frames
of a video, that we split in 33 frames for the memorization
phase and 16 for the prediction one. During testing, the
prediction phase has 45 time steps. For the walking agent
experiment the videos are 300 time steps. Similarly to the
rotation experiment, to form a training sequence we get
consecutive sequences of 150+32 time steps (memorization

and prediction phase respectively). During testing, we use
150 frames for the prediction phase.

The transition noise of the SSM has standard deviation r =
10−2. The pre-trained agent does not hit walls, therefore we
do not need to handle non-linearities as in (4). To compute
distances in the DND we map the state vectors to

s̃t =


s
(1)
t

s
(2)
t

cos(s
(3)
t)

sin(s
(3)
t)

 ,

and optionally pass the resulting vector through a linear
layer. This gives a 5-dimensional vector in a learned mani-
fold in which we use the Euclidean distance (in our exper-
iments, the model performed well even without the linear
layer). In the DND we retrieve the 4 nearest neighbours.

In the VAE, we use convolutional encoder and decoder, and
64-dimensional latent state. The VAE prior pθ(zt|st,m)
used in the Labyrinth experiments is slightly more involved
than the mixture prior used in the image navigation one.
It is formed using a Generative Query Network (Eslami
et al., 2018), that first maps the data retrieved from memory
{si, zi} with a MLP to an embedding vector ht, and then
combines the embedding ht with the current state st, map-
ping the result to the mean and variance of the Gaussian
prior

ht = f({si, zi})
pθ(zt|st,m) = N (µ(ht, st),σ(ht, st)).

The initial learning rate is set to 3 · 10−3, and we linearly
anneal it to 5 · 10−5 during the first 100000 updates.

B. Videos of long-term generation
Videos of long-term generation from the GTM-SM for all
the experiments of this paper are available at this Google
Drive link (goo.gl/RXQPTL). The videos are subdivided in
folders:

1. videos/image navigation/ contains the
videos for the experiments in Section 4.1.

2. videos/labyrinth rotation/ contains the
videos for the experiments in Section 4.2.1.

3. videos/labyrinth walk/ contains the videos
for the experiments in Section 4.2.2.

4. videos/labyrinth walk multirooms/ con-
tains the videos for the experiments in Appendix C.

In all folders, the first video corresponds to the test sequence
used to produce the figures in the paper.

https://drive.google.com/open?id=1WLiyLRDUIMuOWtJEDIUxrTQCOOykeCE0
https://drive.google.com/open?id=1WLiyLRDUIMuOWtJEDIUxrTQCOOykeCE0
https://goo.gl/RXQPTL

C. Walking agent in Labyrinth (multiple
rooms)

We consider the same trained model used for the results
in section 4.2.2. In section 4.2.2, this model was tested
on videos of length T = 300 of an agent walking in a
single room, with both memorization and prediction phase
of 150 time steps. To asses the long-term memorization and
localization capabilities of the GTM-SM, we now test it on
videos of the same agent walking in larger environments
with multiple rooms. Each video is T = 450 time steps;
we store 150 time steps in memory and we predict for 300
more. As the model is trained on single rooms, we cannot
expect the VAE to correctly generate the corridors between
rooms, but we can expect the model to be able to know its
position and the textures in the room (i.e. the color of the
walls and of the floor).

In Figure 4 we show the predictions from the model after
more than 250 time steps from the end of the memorization
phase. As expected, the model fails in drawing the walls
that form the corridor between the two rooms. However, we
see that the GTM-SM correctly remembers the texture of
rooms that it has previously visited and is able to predict the
change in the color of the floor in the corridor. This is better
viewed looking at the videos of this experiment, available in
the folder videos/labyrinth walk multirooms/
in the supplementary material.

D. Inference network using landmark
information

We now introduce an alternative inference network that uses
the information in the DND memory to improve inference
in cases in which the SSM transition model is not power-
ful enough to infer the correct position of the agent. We
factorize the variational approximation qφ(z, s|x,a,v) as

qφ(z, s|x,a,v) = qφ(z|x)qφ(s|z,a,v)

=

T∏
t=τ+1

qφ(zt|xt)qφ(st|st−1,at, zt,m) .

A graphical representation of the inference network of the
GTM-SM is shown in Figure 5. qφ(zt|xt) is an inference
network that outputs the mean and variance of a Gaussian
distribution, as typically done in VAEs. The structured
variational approximation qφ(st|st−1,at, zt,m) retains the
temporal dependency among the state variables and exploits
the information stored in the memory m. We define this
approximation to depend on:

1. The prior belief pθ(st|st−1,at). If at time t − 1 we
were at a given position, this dependence captures the
fact that at time t we cannot be too far from it. This is
the same dependence we used in Section 3.2.

2. Landmark information, obtained by querying the DND
memory in the reverse direction with respect to the
VAE prior, i.e., considering the frame encodings zi
as keys and the states si as values. At each time step
the agent can then check whether it has already seen
the current frame encoding zt in the past, and exploit
this information when computing the inferred position
of the agent. We use zt to query the reversed-DND,
retrieving triplets {(δ(k), z(k), s(k)), k = 1, ..,K ′}
that are used in the computation of the parameters of
qφ(st|st−1,at, zt,m). Here, δ(k)i represents a distance
in z-space.

We define qφ(st|st−1,at, zt,m) to be a Gaussian density,
whose mean µq and variance σ2

q are the outputs of a neural
network that merges the sufficient statistics µp and σ2

p of

the prior pθ(st|st−1,at), and the ones of the states s
(k)
i

retrieved using landmark information: µk,σ
2
k, k = 1 : K ′.

We assume that we stored in the DND the mean and the
variance of Gaussian latent states. The posterior mean is
obtained as

µq = µp +

K′∑
k=1

βk(µk − µp) ,

where βk ∈ [0, 1] is the output of a simple neural network
with input δ(k)i . The inference network can then learn to
assign a high value to βk whenever the distance in z-space
is small (i.e. the current observation is similar to a frame
stored in the DND), so that the prior mean is moved in
the direction of µk. Similarly, the posterior variance can
be computed starting from the prior variance using another
neural network: logσ2

q = logσ2
p+NN(δ1:K

′

i ,σ2
1:K′ ,σ

2
p).

With this choice for the inference network, the ELBO of the
GTM-SM becomes

F(θ, φ) =
T∑

t=τ+1

Eqφ(zt|xt) [log pθ(xt|zt)] +

− Eq?φ(st) [KL[qφ(zt|xt)||pθ(zt|st,m)]] +

− Eq?φ(st−1) [KL [qφ(st|st−1,at, zt,m)||pθ(st|st−1,at)]] .

with

q?φ(st) =

∫
qφ(st|st−1,at, zt,m1:t−1)q

?
φ(st−1) dst−1 .

Notice in particular the additional KL term for the SSM.

D.1. Image navigation with obstacles

We extend the image navigation experiments of Section
4.1 adding obstacles to the environment as illustrated in
Figure 6 (left). We use displacement information as in

True

Predicted

t=396 t=411

Figure 1: Prediction phase for a walking agent trained on one room and tested on multiple rooms. Time steps t396:411.

st−1 st

Memory Memory

zt−1 zt

xt−1 xt

at−1 at

Figure 2: Inference network for the GTM-SM using land-
mark information. Blue arrows represent dependencies on
the reversed DND memory.

the Labyrinth experiment of Section 4.2.2. The obstacles
appear in random positions in each sequence, therefore we
cannot learn a prior transition model that captures these non-
linear dynamics. However, when doing inference the model
can use its knowledge on the current frame xt (that is not
available during the prediction phase) to infer its position
by exploiting landmark information.

To illustrate this we can look at the example in Figure 6
(right). At time t−1, the position st−1 of the agent coincides
with the red star. The agent’s position together with the
corresponding observation xt−1 (the yellow square) will be
inserted in the DND memory. At time t, the agent receives
a “move left” action; the prior transition probabilities will
then predict that the agent has to move to the left (the green
hexagon). Due to the presence of the obstacle however, the
agent does not move, meaning that xt will be the same as
xt−1. Querying the DND in the reverse direction the model
will then know that the inferred state (the blue dot) should
be the same as the position at the previous time step that
was stored in the DND (the red star).

Environment

1.2 1.0 0.8 0.6 0.4 0.2 0.0

s1

1.0

0.8

0.6

0.4

0.2

0.0

0.2

s 2

Inferred states

µp

µq

µk

Figure 3: Image navigation experiment with obstacles. The
agent (yellow square) cannot cross the ostacle (the gray
squared area).

